RoofViews

Science du bâtiment

Vent dominant et codes dominants : Un résumé des modifications de la norme ASCE 7-22 relatives aux toitures

By Kristin Westover

Le 07 septembre 2022

wind

Plusieurs modifications ont été apportées à la version 2022 de la norme ASCE 7 relative aux toitures. Vous pourriez vous dire : « Dès que je maîtrise la norme ASCE 7-16, une version mise à jour doit être publiée ». Comme pour toute norme, il est probable que des mises à jour soient effectuées pour inclure les recherches ou les tendances actuelles. Si la prise en compte des charges des tornades et les modifications des combinaisons de charges qui en résultent sont peut-être les plus importantes, d'autres mises à jour sont également liées aux toitures. Des mises à jour mineures aux cartes de base relatives à la vitesse du vent, en passant par les toits en gradins et les pavés, nous avons compilé un résumé pour vous aider à parcourir les mises à jour. Ne vous inquiétez pas, les modifications ne seront probablement pas incluses avant la version 2024 de l'IBC. Toutefois, cela n'empêche pas d'intégrer ces modifications dans les projets actuels et futurs.

Why are these Changes Significant?

The goal of the calculations in ASCE 7 are to determine the uplift pressures on a roof given project constraints including building height, location, and Risk Category. The resulting uplift pressures are then compared with tested roof assemblies to determine which assembly(ies) can be installed on a roof for each unique building. The assembly selection will also dictate the fastening method, whether it be mechanically fastened or adhered, and also the number and spacing of selected attachments. Changes in the Code may affect calculated uplift pressures that may influence the available roof assemblies.

What is the Update? Updated Basic Wind Speed Maps

Wind speeds vary rapidly and are continuously being recorded at various locations around the world. Wind speeds are recorded in miles per hour (mph) in 3-second intervals and are collected over the course of a year. Then, the maximum values of the 3-second intervals are recorded and tracked to see the occurrence throughout the year. Since wind is a random phenomenon and the speeds vary not only by day, but also by year, the maximum 3-second intervals for each year are compared over several years. Rather than simply taking an average of wind speeds over time, the average wind speeds are analyzed by determining the Mean Recurrence Interval (MRI), which is how frequently a wind speed is equaled or exceeded during any given period of time (in years). Generally, higher wind speeds have a lower recurrence interval over time, and lower wind speeds have a higher recurrence rate over time. Analyzing this data is how wind speeds for a particular location are established.

Wind speed (mph) has to be translated into units of force (psf) for design purposes in accordance with ASCE-7. The resulting forces are different in various roof zones.

ASCE 7-16 has published basic wind speed contour maps for each Risk Category. The wind speed maps have contour lines that show the wind speeds throughout the United States as they vary by geographical location. It is allowable to interpolate between the contour lines, or the larger value listed on the contour line may be used. Additionally, if a location-specific wind speed is desired, an online Hazard Tool developed by ASCE will give an exact wind speed based on an address or GPS coordinates. The 2022 version updated wind speeds, primarily along the coastline. Wind speeds have generally either decreased by a few miles per hour or remained unchanged from ASCE 7-16, with the exception of several cities along the Gulf of Mexico coastline that have increased wind speeds due to recent hurricanes that have made landfall.

Basic wind speeds from select coastal locations in hurricane prone regions at 33 ft for Exposure Category C are shown below. Wind speed data is shown for both ASCE 7-16 and ASCE 7-22 as a comparison.

A table with a comparrison of wind speed requirements.

What is the Update? Wind directionality factor, Kd was moved

The wind directionality factor, Kd, was removed from the Velocity Pressure Coefficient and inserted into the Components and Cladding design wind pressures equation.

The directionality factor (Kd) is a load reduction factor intended to take into account a reduced probability that the maximum wind speed will exactly coincide with the weakest direction of a building. According to ASCE 7, it accounts for the probability that the wind speed will come from any one direction given a location, and the maximum wind speed will occur from the direction that produces the maximum wind pressure on the building or its components. The directionality factor has constant factors to be used for Main Force Resisting Systems or Components and Cladding, but also accounts for various shapes of structures such as arched roofs, circular domes, and chimneys or tanks.

In ASCE 7-16, Kd was located in the Velocity Pressure Equation (eq. 26,1-1) where velocity pressure, qh, is evaluated at the mean roof height, h. Where qh= qz .

qh=0,003KhKztKdKeV2 Which provides a velocity pressure in pounds per square foot (psf).

The resulting value of qh is then multiplied by the external pressure coefficients (GCp) and then used to determine the wind pressure coefficients for each roof zone (perimeter, corner, field, etc.)

p = qh [(Gcp) - (GCpi)] (lb/ft2)

In ASCE 7-22, the velocity pressure, qh, is evaluated at the mean roof height, h. Where qh= qz by the following equation (eq. 26,1-1):

qh=0,003KhKztKeV2 Which provides a velocity pressure in pounds per square foot (psf).

As you can see, the directionality factor, Kd, has been removed from the equation. In calculations for both the Main Wind Force Resisting System and Components and Cladding, Kd, has been inserted into the equations. However, since we are focusing on the roof, this falls within the Components and Cladding (C&C) calculations in Chapter 30. The design wind pressures of C&C elements are calculated with the following equations:

For low rise buildings with h≤ 60 ft: (eq. 30,3-1)

p = qh Kd[(Gcp) - (GCpi)] (lb/ft2)

For low rise buildings with h>60 ft: (eq. 30,4-1)

p = q Kd[(Gcp) - qi Kd(GCpi)] (lb/ft2)

What is the Update? Velocity Pressure Coefficients, Kz and Kh updated

The Velocity Pressure Coefficients, Kz and Kh, for Exposures B and C were updated. Kz is the velocity pressure coefficient evaluated at height z, and Kh is the velocity pressure coefficient evaluated at height z = h. The velocity pressure at mean roof height h uses Kz. The variables are inserted into equation 26,1 to determine Velocity Pressure, qz (see equations above).

Table 26.10-1 Velocity Pressure Exposure Coefficients

What is the Update? Simplified Methods for Calculating C&C Removed

The two simplified methods, Part 2 and Part 4 were removed from Chapter 30, Wind Loads, Components and Cladding.

In the 2016 version there were two simplified methods that allowed for reduced calculations:

  • Part 1 included calculations for Low-Rise Buildings

  • Part 2 was for Low-Rise Building (simplified)

  • Part 3 included calculations for buildings with h> 60ft

  • Part 4 was for buildings 60 ft<><160ft>

  • Part 5 is Open Buildings

  • Part 6 included Building Appurtenances, Rooftop Structures, and Equipment.

The 2022 version has removed the two simplified methods:

  • Part 1 for Low-Rise Buildings

  • Part 2 is for buildings with h> 60ft

  • Part 3 is Open Buildings

  • Part 4 includes Building Appurtenances, Rooftop Structures, and Equipment.

What is the Update? Section 30,12 was added to address roof pavers

Roof pavers are used in IRMA (Inverted Roof Membrane Assembly) and PMRA (Protected Membrane Roof Assembly) assemblies where the roofing components are installed at the structural roof deck level and then the pavers are installed as ballast on top of the roof assembly. Roof pavers vary in size, thickness, material, and spacing, in addition to installation method and pedestal size. Pavers are considered air permeable since the gaps between pavers and the space beneath the pedestals allow for partial air pressure equalization between the surfaces. Roof pavers were only addressed in the Commentary Section C30,1 of the 2016 version and are referred to as Air Permeable Cladding. However, siding, pressure equalized rain screen walls, shingles, tiles, and aggregate roof surfacing were all included in this category. In ASCE 7-16, 'because of partial air-pressure equalization provided by air-permeable claddings, the C&C pressures services from Chapter 30 can overestimate the load on cladding elements. The designer may elect to use the loads derived from Chapter 30 or those derived by an alternate method.' While equations and methods are not included in this edition, several references are included where calculation methods may be found.

In the commentary of ASCE 7-22, air permeable cladding is still defined as roof or wall claddings that allow partial air pressure equalization between the exterior and interior surfaces, with the same listing of claddings to include siding, roof pavers, and vegetative modular trays. The designer may elect to calculate the net uplift pressures of the pavers with recognized literature as noted in ASCE 7016 or Section 30.12. Section 30,12 was added to include Roof Pavers for Buildings of all heights with roof slopes less than or equal to 7 degrees. The Section includes an equation (eq. 30,12-1) to calculate design net uplift pressures:

p = qhKdCLnet (lb/ft2)

What is the Update? Roof Zones were revised for Hip and Gable Roofs

As wind blows over roof surfaces, it creates suction, or uplift, on the roof assemblies. The amount of uplift varies by building height, location (associated wind speed), and other factors unique to each building. The uplift created on the building is not uniformly distributed, and will vary depending on factors such as roof shape. Wind uplift is highest at the corners, then perimeters, and is the least in the field, or center of the roof; these varying wind uplift locations are called roof zones.

Hip Roofs are where all four sides of the roof slopes down to connect to the exterior walls at the eaves. Gable roofs have two slanted sides that form a ridge that connect to the vertical walls that extend to the ridge. Chapter 30 of both ASCE 7-16 and 7-22 include roof zone diagrams and graphics that can be used to determine the External Pressure Coefficients (GCp).

Depiction of a Hip Roof

Image 1: Hip roof

Depiction of a gable roof

Image 2: Gable roof

Images 1 and 2: Hip roof and gable roof, images courtesy of roofingcalc.com

In ASCE 7-22, both the roof zone diagrams and the graphics to determine GCp are updated. The roof zones are simplified to have three zones, Zone 1, Zone 2, and Zone 3 (in lieu of Zone 1, Zone 2r, Zone 2e, and Zone 3), and the accompanying zone layout was modified to include the Zone changes. The External Pressure Coefficients are determined using graphics, and those also have been updated and simplified.

Components and Cladding, h ≤ 60 ft, Gable Roofs Roof Slopes 7°≤Θ≤ 20° and 20°≤Θ≤ 27°

ASCE 7-16 vs ASCE 7-22

Components and Cladding, h ≤ 60 ft, Gable Roofs Roof Slopes 27°≤Θ≤ 45°

ASCE 7-16 vs ASCE 7-22

Hip roofs have one roof zone layout plan for all roof slopes, however, External pressure Coefficients graphs were updated for each.

External pressure Coefficients graphs

What is the Update? Roof Zones were revised for Stepped Roofs

Stepped roofs are where buildings have multiple flat roof levels, which are often seen on large hospitals, offices, and school buildings. While stepped roofs have wind uplift pressures and corresponding roof zones, it is important to note that wind on the lower roof is affected by the neighboring higher roof sections. At the intersection of the higher roof section with the lower roof section, the wind uplift pressures are lower.

New diagrams have been inserted into Chapter 30 of the ASCE 7-22 version. The primary change to note is that the corner zones, zone 3, have been changed from square shapes to L shapes. This is a reflection of the standard roof zones which have been updated from square corners to L shaped corners in more recent versions of ASCE as well.

ASCE 7-16, Figure 30,3-3 Components and Cladding, h ≤ 60 ft

ASCE 7-16, Figure 30.3-3 Components and Cladding, h ≤ 60 ft

ASCE 7-22, Figure 30,3-3 Components and Cladding, h ≤ 60 ft

ASCE 7-22, Figure 30.3-3 Components and Cladding, h ≤ 60 ft

What are the next steps?

It is anticipated that ASCE 7-22 will be adopted in the 2024 version of the IBC, so there is plenty of time to get comfortable with the updates. And as always, feel free to reach out to the Building & Roofing Science team at buildingscience@gaf.com with questions.

About the Author

Kristin Westover, P.E., LEED AP O+M, is a Technical Manager of Specialty Installations for low-slope commercial roofing systems at GAF. She specializes in cold storage roofing assemblies where she provides insight, education, and best practices as it relates to cold storage roofing. Kristin is part of the Building and Roofing Science Team where she works with designers on all types of low-slope roofing projects to review project design considerations so designers can make informed roof assembly decisions.

Articles connexes

Installation of ISO Board and TPO on a Roof
Science du bâtiment

Isolation des toitures : un investissement positif pour réduire l’empreinte carbone

Avez-vous déjà pensé à des produits de construction qui réduisent les émissions de dioxyde causées par votre bâtiment? When considered over their useful life, materials like insulation decrease total carbon emissions thanks to their performance benefits. Read on for an explanation of how this can work in your designs.What is Total Carbon?Total carbon captures the idea that the carbon impacts of buildings should be considered holistically across the building's entire life span and sometimes beyond. (In this context, "carbon" is shorthand for carbon dioxide (CO2) emissions.) Put simply, total carbon is calculated by adding a building's embodied carbon to its operational carbon.Total Carbon = Embodied Carbon + Operational CarbonWhat is Embodied Carbon?Embodied carbon is comprised of CO2 emissions from everything other than the operations phase of the building. This includes raw material supply, manufacturing, construction/installation, maintenance and repair, deconstruction/demolition, waste processing/disposal of building materials, and transport between each stage and the next. These embodied carbon phases are indicated by the gray CO2 clouds over the different sections of the life cycle in the image below.We often focus on "cradle-to-gate" embodied carbon because this is the simplest to calculate. "Cradle-to-gate" is the sum of carbon emissions from the energy consumed directly or indirectly to produce the construction materials used in a building. The "cradle to gate" approach neglects the remainder of the embodied carbon captured in the broader "cradle to grave" assessment, a more comprehensive view of a building's embodied carbon footprint.What is Operational Carbon?Operational carbon, on the other hand, is generated by energy used during a building's occupancy stage, by heating, cooling, and lighting systems; equipment and appliances; and other critical functions. This is the red CO2 cloud in the life-cycle graphic. It is larger than the gray CO2 clouds because, in most buildings, operational carbon is the largest contributor to total carbon.What is Carbon Dioxide Equivalent (CO2e)?Often, you will see the term CO2e used. According to the US Environmental Protection Agency (EPA), "CO2e is simply the combination of the pollutants that contribute to climate change adjusted using their global warming potential." In other words, it is a way to translate the effect of pollutants (e.g. methane, nitrous oxide) into the equivalent volume of CO2 that would have the same effect on the atmosphere.Today and the FutureToday, carbon from building operations (72 %) is a much larger challenge than that from construction materials' embodied carbon (28 %) (Architecture 2030, 2019). Projections into 2050 anticipate the operations/embodied carbon split will be closer to 50/50, but this hinges on building designs and renovations between now and 2050 making progress on improving building operations.Why Insulation?Insulation, and specifically continuous insulation on low-slope roofs, is especially relevant to the carbon discussion because, according to the Embodied Carbon 101: Envelope presentation by the Boston Society for Architecture: Insulation occupies the unique position at the intersection of embodied and operational carbon emissions for a building. Insulation is the only building material that directly offsets operational emissions. It can be said to pay back its embodied carbon debt with avoided emissions during the building's lifetime.A Thought Experiment on Reducing Total CarbonTo make progress on reducing the total carbon impact of buildings, it is best to start with the largest piece of today's pie, operational carbon. Within the range of choices made during building design and construction, not all selections have the same effect on operational carbon.When making decisions about carbon and energy reduction strategies, think about the problem as an "investment" rather than a "discretionary expense." Discretionary expenses are easier to reduce or eliminate by simply consuming less. In the example below, imagine you are flying to visit your client's building. Consider this a "discretionary expense." The input on the far left is a given number of kilograms of carbon dioxide equivalent (CO2e) generated for the flight, from the manufacturing of the airplane, to the fuel it burns, to its maintenance. The output is the flight itself, which creates CO2 emissions, but no durable good. In this case, the only CO2 reduction strategy you can make is to make fewer or shorter flights, perhaps by consolidating visits, employing a local designer of record, or visiting the building virtually whenever possible. Now consider the wallpaper you might specify for your client's building. It involves a discretionary expenditure of CO2e, in this case, used to produce a durable good. However, this durable good is a product without use-phase benefits. In other words, it cannot help to save energy during the operational phase of the building. It has other aesthetic and durability benefits, but no operational benefits to offset the CO2 emissions generated to create it. Your choices here are expanded over the previous example of an airplane flight. You can limit CO2 by choosing a product with a long useful life. You can also apply the three Rs: reduce the quantity of new product used, reuse existing material when possible, and recycle product scraps at installation and the rest at the end of its lifespan. In the final step in our thought experiment, consider the insulation in your client's building. As before, we must generate a certain amount of CO2e to create a durable good. In this case, it's one with use-phase benefits. Insulation can reduce operational energy by reducing heat flow through the building enclosure, reducing the need to burn fuel or use electricity to heat and cool the building. The good news is that, in addition to the other strategies considered for the flight and the wallpaper, here you can also maximize operational carbon savings to offset the initial embodied carbon input. And, unlike the discretionary nature of some flights and the often optional decision to use furnishings like wallpaper, heating and cooling are necessary for the functioning of almost all occupied buildings.Based on this example, you can consider building products with operational benefits, like insulation, as an "investment." It is appropriate to look at improving the building enclosure and understanding what the return on the investment is from a carbon perspective. As the comparison above demonstrates, if you have a limited supply of carbon to "invest", putting it into more roof insulation is a very smart move compared to "spending" it on a discretionary flight or on a product without use-phase carbon benefits, such as wallpaper.This means we should be careful not to measure products like insulation that save CO2e in the building use-phase savings only by their embodied carbon use, but by their total carbon profile. So, how do we calculate this?Putting It to the TestWe were curious to know just how much operational carbon roof insulation could save relative to the initial investment of embodied carbon required to include it in a building. To understand this, we modeled the US Department of Energy's (DOE) Standalone Retail Prototype Building located in Climate Zone 4A to comply with ASHRAE 90,1-2019 energy requirements. We took the insulation product's embodied energy and carbon data from the Polyisocyanurate Insulation Manufacturers Association's (PIMA) industry-wide environmental product declaration (EPD).To significantly reduce operational carbon, the largest carbon challenge facing buildings today, the returns on the investment of our building design strategies need to be consistent over time. This is where passive design strategies like building enclosure improvements really shine. They have much longer service lives than, for example, finish materials, leading to sustained returns.Specifically, we looked here at how our example building's roof insulation impacted both embodied and operational carbon and energy use. To do this, we calculated the cumulative carbon savings over the 75-year life of our model building. In our example, we assumed R-30 insulation installed at the outset, increased every 20 years by R-10, when the roof membrane is periodically replaced.In our analysis, the embodied CO2e associated with installing R-30 (shown by the brown curve in years -1 to 1), the embodied carbon of the additional R-10 of insulation added every 20 years (too small to show up in the graph), and the embodied carbon represented by end-of-life disposal (also too small to show up) are all taken into account. About five months after the building becomes operational, the embodied carbon investment of the roof insulation is dwarfed by the operational savings it provides. The initial and supplemental roof insulation ultimately saves a net of 705 metric tons of carbon over the life of the building.If you want to see more examples like the one above, check out PIMA's study, conducted by the consulting firm ICF. The research group looked at several DOE building prototypes across a range of climate zones, calculating how much carbon, energy, and money can be saved when roof insulation is upgraded from an existing baseline to current code compliance. Their results can be found here. Justin Koscher of PIMA also highlighted these savings, conveniently sorted by climate zone and building type, here.Support for Carbon Investment DecisionsSo how can you make sure you address both operational and embodied carbon when making "carbon investment" decisions? We've prepared a handy chart to help.First, when looking at lower-embodied-carbon substitutions for higher-embodied-carbon building materials or systems (moving from the upper-left red quadrant to the lower-left yellow quadrant in the chart), ensure that the alternatives you are considering have equivalent performance attributes in terms of resilience and longevity. If an alternative material or system has lower initial embodied carbon, but doesn't perform as well or last as long as the specified product, then it may not be a good carbon investment. Another consideration here is whether or not the embodied carbon of the alternative is released as emissions (i.e. as part of its raw material supply or manufacturing, or "cradle to gate" stages), or if it remains in the product throughout its useful life. In other words, can the alternative item be considered a carbon sink? If so, using it may be a good strategy.Next, determine if the alternative product or system can provide operational carbon savings, even if it has high embodied energy (upper-right yellow quadrant). If the alternative has positive operational carbon impacts over a long period, don't sacrifice operational carbon savings for the sake of avoiding an initial embodied product carbon investment when justified for strategic reasons.Last, if a product has high operational carbon savings and relatively low embodied carbon (lower-right green quadrant), include more of this product in your designs. The polyiso roof insulation in our example above fits into this category. You can utilize these carbon savings to offset the carbon use in other areas of the design, like aesthetic finishes, where the decision to use the product may be discretionary but desired.When designing buildings, we need to consider the whole picture, looking at building products' embodied carbon as a potential investment yielding improved operational and performance outcomes. Our design choices and product selection can have a significant impact on total carbon targets for the buildings we envision, build, and operate.Click these links to learn more about GAF's and Siplast's insulation solutions. Please also visit our design professional and architect resources page for guide specifications, details, innovative green building materials, continuing education, and expert guidance.We presented the findings in this blog in a presentation called "Carbon and Energy Impacts of Roof Insulation: The Whole[-Life] Story" given at the BEST6 Conference on March 19, 2024 in Austin, Texas.References:Architecture 2030. (2019). New Buildings: Embodied Carbon. https://web.archive.org/web/20190801031738/https://architecture2030.org/new-buildings-embodied/ Carbon Leadership Forum. (2023, April 2). 1 - Embodied Carbon 101. https://carbonleadershipforum.org/embodied-carbon-101/

By Authors Elizabeth Grant

Le 18 septembre 2024

An aerial shot of the student housing building on the Texas A&M campus.
Science du bâtiment

Est-ce que les assemblages de toitures hybrides valent-ils vraiment la peine?

Comment est-ce que les assemblages de toitures contribuent à l’efficacité énergétique, la robustesse, et les objectifs de durabilité d’un bâtiment? La selection intentionnelle des matériaux augmentera la robustesse de l’assemblage y compris la capacité de survivre à une tempête, une isolation adéquate aidera à maintenir les températures intérieures et faire des économies énergétique, et les matériaux plus durables peuvent tenir plus longtemps ayant pour résultat des remplacements moins fréquents. Hybrid roof assemblies are the latest roofing trend aimed at contributing to these goals, but is all the hype worth it?What is a hybrid roof assembly?A hybrid roof assembly is where two roofing membranes, composed of different technologies, are used in one roof system. One such assembly is where the base layers consist of asphaltic modified bitumen, and the cap layer is a reflective single-ply membrane such as a fleece-back TPO or PVC. Each roof membrane is chosen for their strengths, and together, the system combines the best of both membranes. A hybrid system such as this has increased robustness, with effectively two plies or more of membrane.Asphaltic membranes, used as the first layer, provide redundancy and protection against punctures as it adds overall thickness to the system. Asphaltic systems, while having decades of successful roof installations, without a granular surface may be vulnerable to UV exposure, have minimal resistance to ponding water or certain chemical contaminants, and are generally darker in color options as compared to single ply surfacing colors choices. The addition of a single-ply white reflective membrane will offset these properties, including decreasing the roof surface temperatures and potentially reducing the building's heat island effect as they are commonly white or light in color. PVC and KEE membranes may also provide protection where exposure to chemicals is a concern and generally hold up well in ponding water conditions. The combination of an asphaltic base below a single-ply system increases overall system thickness and provides protection against punctures, which are primary concerns with single-ply applications.Pictured Above: EverGuard® TPO 60-mil Fleece-Back MembraneOlyBond 500™ AdhesiveRUBEROID® Mop Smooth MembraneMillennium Hurricane Force ® 1-Part Membrane AdhesiveDensDeck® Roof BoardMillennium Hurricane Force ® 1-Part Membrane AdhesiveEnergyGuard™ Polyiso InsulationMillennium Hurricane Force ® 1-Part Membrane AdhesiveConcrete DeckPictured Above: EverGuard® TPO 60-mil Fleece-Back MembraneGAF LRF Adhesive XF (Splatter)RUBEROID® HW Smooth MembraneDrill-Tec™ Fasteners & PlatesDensDeck® Prime Gypsum BoardEnergyGuard™ Polyiso InsulationEnergyGuard™ Polyiso InsulationGAF SA Vapor Retarder XLMetal DeckWhere are hybrid roof assemblies typically utilized?Hybrid roof assemblies are a common choice for K-12 & higher education buildings, data centers, and hospitals due to their strong protection against leaks and multi-ply system redundancy. The redundancy of the two membrane layers provides a secondary protection against leaks if the single-ply membrane is breached. Additionally, the reflective single-ply membrane can result in lower rooftop temperatures. The addition of a reflective membrane over a dark-colored asphaltic membrane will greatly increase the Solar Reflectance Index (SRI) of the roof surface. SRI is an indicator of the ability of a surface to return solar energy into the atmosphere. In general, roof material surfaces with a higher SRI will be cooler than a surface with a lower SRI under the same solar energy exposure. A lower roof surface temperature can result in less heat being absorbed into the building interior during the summer months.Is a hybrid only for new construction?The advantage of a hybrid roof assembly is significant in recover scenarios where there is an existing-modified bitumen or built-up roof that is in overall fair condition and with little underlying moisture present. A single ply membrane can be installed on top of the existing roof system without an expensive and disruptive tear-off of the existing assembly. The addition of the single-ply membrane adds reflectivity to the existing darker colored membrane and increases the service life of the roof assembly due to the additional layer of UV protection. Additionally, the single-ply membrane can be installed with low VOC options that can have minimum odor and noise disturbance if construction is taking place while the building is occupied.Is the hybrid assembly hype worth it?Absolutely! The possibility to combine the best aspects of multiple roofing technologies makes a hybrid roof assembly worth the hype. It provides the best aspects of a single-ply membrane including a reflective surface for improved energy efficiency, and increased protection against chemical exposure and ponding water, while the asphaltic base increases overall system waterproofing redundancy, durability and protection. The ability to be used in both new construction and recover scenarios makes a multi-ply hybrid roof an assembly choice that is here to stay.Interested in learning more about designing school rooftops? Check out available design resources school roof design resources here. And as always, feel free to reach out to the Building & Roofing Science team with questions.This article was written by Kristin M. Westover, P.E., LEED AP O+M, Technical Manager, Specialty Installations, in partnership with Benjamin Runyan, Sr. Product Manager - Asphalt Systems.

By Authors Kristin Westover

28 décembre 2023

Flat roof with hot air welded pvc membrane waterproofing for ballasted system
Science du bâtiment

Ponts thermiques sur les fixations de toit : Pourquoi l’industrie devrait en tenir compte

What is going on here?No, this roof does not have measles, it has a problem with thermal bridging through the roof fasteners holding its components in place, and this problem is not one to be ignored.As building construction evolves, you'd think these tiny breaches through the insulating layers of the assembly, known as point thermal bridges, would matter less and less. But, as it happens, the reverse is true! The tighter and better-insulated a building, the bigger the difference all of the weak points, in its thermal enclosure, make. A range of codes and standards are beginning to address this problem, though it's important to note that there is often a time lag between development of codes and their widespread adoption.What Is the Industry Doing About It?Long in the business of supporting high-performance building enclosures, Phius (Passive House Institute US) provides a Fastener Correction Calculator along with a way to calculate the effect of linear thermal bridges (think shelf angles, lintels, and so on). By contrast, the 2021 International Energy Conservation Code also addresses thermal bridging, but only considers framing materials to be thermal bridges, and actually pointedly ignores the effects of point loads like fasteners in its definition of continuous insulation: "insulation material that is continuous across all structural members without thermal bridges other than fasteners and service openings" (Section C202). Likewise, The National Energy Code of Canada for Buildings: 2020 addresses thermal bridging of a number of building components, but also explicitly excludes fasteners: "in calculating the overall thermal transmittance of assemblies…fasteners need not be taken into account" (Section 3.1.1.7.3). Admittedly, point thermal bridges are often excluded because it is challenging to assess them with simple simulation tools.Despite this, researchers have had a hunch for decades that thermal bridging through the multitude of fasteners often used in roofs is in fact significant enough to warrant study. Investigators at the National Bureau of Standards, Oak Ridge National Laboratory, the National Research Council Canada, and consulting firms Morrison Hershfield and Simpson Gumpertz & Heger (SGH), have conducted laboratory and computer simulation studies to analyze the effects of point thermal bridges.Why Pay Attention Now?The problem has been made worse in recent years because changes in wind speeds, design wind pressures, and roof zones as dictated by ASCE 7-16 and 7-22 (see blogs by Jim Kirby and Kristin Westover for more insight), mean that fastener patterns are becoming denser in many cases. This means that there is more metal on average, per square foot of roof, than ever before. More metal means that more heat escapes the building in winter and enters the building in summer. By making our buildings more robust against wind uplift to meet updated standards, we are in effect making them less robust against the negative effects of hot and cold weather conditions.So, how bad is this problem, and what's a roof designer to do about it? A team of researchers at SGH, Virginia Tech, and GAF set out to determine the answer, first by simplifying the problem. Our plan was to develop computer simulations to accurately anticipate the thermal bridging effects of fasteners based on their characteristics and the characteristics of the roof assemblies in which they are used. In other words, we broke the problem down into parts, so we could know how each part affects the problem as a whole. We also wanted to carefully check the assumptions underlying our computer simulation and ensure that our results matched up with what we were finding in the lab. The full paper describing our work was delivered at the 2023 IIBEC Convention and Trade Show, but here are the high points, starting with how we set up the study.First, we began with a simple 4" polyisocyanurate board (ISO), and called it Case A-I.Next, we added a high-density polyisocyanurate cover board (HD ISO), and called that Case A-II.Third, we added galvanized steel deck to the 4" polyiso, and called that Case A-III.Finally, we created the whole sandwich: HD ISO and ISO over steel deck, which was Case A-IV.Note that we did not include a roof membrane, substrate board, air barrier, or vapor retarder in these assemblies, partly to keep it simple, and partly because these components don't typically add much insulation value to a roof assembly.The cases can be considered base cases, as they do not yet contain a fastener. We needed to simulate and physically test these, so we could understand the effect that fasteners have when added to them.We also ran a set of samples, B-I through B-IV, that corresponded with cases A-I through A-IV above, but had one #12 fastener, 6" long, in the center of the 2' x 2' assembly, with a 3" diameter insulation plate. These are depicted below. The fastener penetrated the ISO and steel deck, but not the HD ISO.One visualization of the computer simulation is shown here, for Case B-IV. The stripes of color, or isotherms, show the vulnerability of the assembly at the location of the fastener.What did we find? The results might surprise you.First, it's no surprise that the fastener reduced the R-value of the 2' x 2' sample of ISO alone by 4,2 % in the physical sample, and 3,4 % in the computer simulation (Case B-I compared to Case A-I).When the HD ISO was added (Cases II), R-value fell by 2,2 % and 2,7 % for the physical experiment and computer simulation, respectively, when the fastener was added. In other words, adding the fastener still caused a drop in R-value, but that drop was considerably less than when no cover board was used. This proved what we suspected, that the HD ISO had an important protective effect against the thermal bridging caused by the fastener.Next, we found that the steel deck made a big difference as well. In the physical experiment, the air contained in the flutes of the steel deck added to the R-value of the assembly, while the computer simulation did not account for this effect. That's an item that needs to be addressed in the next phase of research. Despite this anomaly, both approaches showed the same thing: steel deck acts like a radiator, exacerbating the effect of the fastener. In the assemblies with just ISO and steel deck (Cases III), adding a fastener resulted in an R-value drop of 11 % for the physical experiment and 4,6 % for the computer simulation compared to the assembly with no fastener.Finally, the assemblies with all the components (HD ISO, ISO and steel deck, a.k.a. Cases IV) showed again that the HD ISO insulated the fastener and reduced its negative impact on the R-value of the overall assembly. The physical experiment had a 6,1 % drop (down from 11 % with no cover board!) and the computer simulation a 4,2 % drop (down from 4,6 % with no cover board) in R-value when the fastener was added.What Does This Study Tell Us?The morals of the study just described are these:Roof fasteners have a measurable impact on the R-value of roof insulation.High-density polyisocyanurate cover boards go a long way toward minimizing the thermal impacts of roof fasteners.Steel deck, due to its high conductivity, acts as a radiator, amplifying the thermal bridging effect of fasteners.What Should We Do About It?As for figuring out what to do about it, this study and others first need to be extended to the real world, and that means making assumptions about parameters like the siting of the building, the roof fastener densities required, and the roof assembly type.Several groups have made this leap from looking at point thermal bridges to what they mean for a roof's overall performance. The following example was explored in a paper by Taylor, Willits, Hartwig and Kirby, presented at the RCI, Inc. Building Envelope Technology Symposium in 2018. In that paper, the authors extended computer simulation results from a 2015 paper by Olson, Saldanha, and Hsu to a set of actual roofing scenarios. They found that the installation method has a big impact on the in-service R-value of the roof.They assumed a 15,000-square-foot roof, fastener patterns and densities based on a wind uplift requirement of 120 pounds per square foot, and a design R-value of R-30. In this example, a traditional mechanically attached roof had an in-service R-value of only R-25, which is a 17 % loss compared to the design R-value.An induction-welded roof was a slight improvement over the mechanically attached assembly, with an in-service value of only R-26,5 (a 12 % loss compared to the design R-value).Adhering instead of fastening the top layer of polyiso resulted in an in-service R-value of R-28,7 (a 4 % loss compared to the design R-value).Finally, in their study, an HD polyiso board was used as a mechanically fastened substrate board on top of the steel deck, allowing both layers of continuous polyiso insulation and the roof membrane to be adhered. Doing so resulted in an in-service R-value of R-29.5, representing only a 1,5 % loss compared to the design R-value.To operationalize these findings in your own roofing design projects, consider the following approaches:Consider eliminating roof fasteners altogether, or burying them beneath one or more layers of insulation. Multiple studies have shown that placing fastener heads and plates beneath a cover board, or, better yet, beneath one or two layers of staggered insulation, such as GAF's EnergyGuard™ Polyiso Insulation, can dampen the thermal bridging effects of fasteners. Adhering all or some of the layers of a roof assembly minimizes unwanted thermal outcomes.Consider using an insulating cover board, such as GAF's EnergyGuard™ HD or EnergyGuard™ HD Plus Polyiso cover board. Installing an adhered cover board in general is good roofing practice for a host of reasons: they provide enhanced longevity and system performance by protecting roof membranes and insulation from hail damage; they allow for enhanced wind uplift and improved aesthetics; and they offer additional R-value and mitigate thermal bridging as shown in our recent study.Consider using an induction-welded system that minimizes the number of total roof fasteners by dictating an even spacing of insulation fasteners. The special plates of these fasteners are then welded to the underside of the roof membrane using an induction heat tool. This process eliminates the need for additional membrane fasteners.Consider beefing up the R-value of the roof insulation. If fasteners diminish the actual thermal performance of roof insulation, building owners are not getting the benefit of the design R-value. Extra insulation beyond the code minimum can be specified to make up the difference.Where Do We Go From Here?Some work remains to be done before we have a computer simulation that more closely aligns with physical experiments on identical assemblies. But, the two methods in our recent study aligned within a range of 0,8 to 6,7 %, which indicates that we are making progress. With ever-better modeling methods, designers should soon be able to predict the impact of fasteners rather than ignoring it and hoping for the best.Once we, as a roofing industry, have these detailed computer simulation tools in place, we can include the findings from these tools in codes and standards. These can be used by those who don't have the time or resources to model roof assemblies using a lab or sophisticated modeling software. With easy-to-use resources quantifying thermal bridging through roof fasteners, roof designers will no longer be putting building owners at risk of wasting energy, or, even worse, of experiencing condensation problems due to under-insulated roof assemblies. Designers will have a much better picture of exactly what the building owner is getting when they specify a roof that includes fasteners, and which of the measures detailed above they might take into consideration to avoid any negative consequences.This research discussed in this blog was conducted with a grant from the RCI-IIBEC Foundation and was presented at IIBEC's 2023 Annual Trade Show and Convention in Houston on March 6. Contact IIBEC at https://iibec.org/ or GAF at BuildingScience@GAF.com for more information.

By Authors Elizabeth Grant

17 novembre 2023

Ne manquez pas une autre publication Roof Views de GAF!

Subscribe now