RoofViews

Building Science

Overburden

By Kristin Westover

June 15, 2022

overburden installations

Since its inception a roof's primary purpose has been to shelter its inhabitants from the elements, but now the underutilized potential of roof surfaces is being realized. For roofs with large surface areas, the potential for large overburden installations, such as solar, vegetative roofing, or amenity decks can be exceptional. Even smaller roofs can have overburden that make a significant impact on the sustainability goals of a building including: increased energy efficiency, stormwater retention, energy generation, biohabitat restoration, food production, reduced urban heat island effect, and outdoor space.

However, selection of the overburden system is only part of the design. Selection and design of the roof membrane, the waterproofing layer that protects the building, is critical for a long-lasting installation. Failure of the membrane, whether it requires repair or replacement, may necessitate removal of the overburden. The removal of the overburden can result in lost energy generation for solar installations, and loss of rainwater capture for both vegetative and blue or purple roof assemblies. Appropriate selection of the entire assembly, including proper detailing and integration of the roof assembly, as well as installation, are paramount to the overall success and longevity of the overburden system.

Overburden Assemblies

Roofing overburden is defined as "any manner of material, equipment or installation that is situated on top of, and covering all or a portion of, a roof or waterproofing membrane assembly."* This excludes thermal insulation but includes: planters, vegetative roof assemblies (both trays and built-up), loose gravel, water tanks, void fill (like EPS, XPS, and/or Polyiso rigid foam), tiles, pavers, supporting pedestals, equipment, and solar PV arrays.*

While each property is unique, there are many overburden options and roof assembly considerations to meet sustainability goals.

  1. Vegetative Roofs: Vegetative roofs are plants that are installed in trays or built in-place on the roof with extensive or intensive plant configurations. Tray systems and extensive roofs are generally in depths of less than six inches and consist of shallow rooted plants, such as sedums. Intensive vegetative roof systems have deeper soil depths and can accommodate larger plant installations.

  2. Blue Roofs: Blue roofs are systems that are designed to provide stormwater detention. Rainfall onto the roof is managed using orifices, weirs, or other outlet devices that control the discharge rate of rooftop runoff.

  3. Blue-Green Roofs: A blue-green roof is a blue roof with a vegetative roof assembly.

  4. Purple Roofs: A purple roof is a "sponge" roof that incorporates a sponge-like layer made of hydrophilic mineral wool, a dense polyester fabric detention layer, and may or may not include an additional honeycomb layer to increase the volume of rainwater that can be retained and detained .

  5. Rooftop Solar: Solar PV panels come in both single sided and bifacial (double-sided) modules. A bifacial module can produce power from both sides thereby increasing the energy generation. Modules are supported by racking systems on the rooftop that are either mechanically attached to the roof, mechanically attached to a structural canopy that is attached to the roof, or held in place with ballast.

  6. Agrivoltaics: The emerging practice of agrivoltaics, or agriculture combined with photovoltaics, is showing promise as a mutually beneficial symbiotic solution to not only increase the efficiency of solar panels, but also increase plant size and crop yields by shading and limiting soil evaporation

Roofs have the potential for many types of overburden installations including vegetative assemblies, plaza decks, and incorporation of multiple types of assemblies.

Roof System Considerations

Selection of the roof membrane, the waterproofing layer that protects the building, is critical for the success of overburden installations. The membrane performance and roofing assembly configuration, including location of the membrane in the assembly must be considered. Improper selection of membranes can result in leaks, costly repairs, or even replacement. Special considerations like the type of insulation and cover board should be explored. Most importantly, the roof system should have a lifespan that is equal to or greater than the overburden system. Membrane performance is not only dependent on the overburden and associated roofing assembly materials, but also the design and installation. Roof assembly selection and specific design details down to the last termination and penetration detail should be provided to ensure the roof is installed in accordance with the contract documents.

Membrane Selection

Single-ply membranes can be an excellent choice for overburden installations as they can be used at the deck level and at the top of the assembly. Membranes that will be used at the deck level, such as for vegetative assemblies, should be evaluated for durability and longevity since access to them for repairs will be limited. Solar is typically installed directly on the membrane. For blue roofs and water catchment systems, single-ply membranes are commonly used at the top of the assembly and it is recommended that single-ply membranes meet NSF P151 water standards.

Membrane Color

For roof assemblies where the membrane is exposed and at the top of the assembly, such as for solar panel installations and blue roof assemblies, the color can have a significant impact on the performance of the system and also on the roof surface temperatures. Reflective roof membranes can lower the ambient roof temperature. Using a lighter colored roof can decrease the urban heat island effect in cities, and also may decrease the amount of heat that is able to radiate into a building's interior.

For solar panel installations, light colored or reflective roof membranes can lower the ambient roof temperature which allows the panels to function more efficiently. The temperature of a PV panel can significantly impact how much electricity the panel produces; as panels get hotter, they produce less power. According to an article published by GAF, "It is estimated that the efficiency of a PV panel can be up to 13 percent higher when installed over a highly reflective membrane compared to a dark membrane with low reflectance. Also, the use of bifacial PV panels over reflective roof membranes can increase the efficiency by 20-35 percent, as they take advantage of the reflected light.

For overburden installations, such as blue or purple roofs where the membrane is exposed, reflective membranes are also advantageous. Even though the roof may not always be holding water, or presumably when water is present it is translucent, a reflective membrane contributes to lower roof surface temperatures. Additionally, vegetative roof systems can take advantage of reflective membranes where vegetation is not installed. Codes require that borders and paths are maintained on the roof for fire, access, and maintenance. Reflective membranes at these locations may lower roof temperatures which mitigates interior heat gain, and also decreases the strain of summer heat on vegetation.

For solar panel installations, light colored or reflective roof membranes can lower the ambient roof temperature which allows the panels to function more efficiently.

Membrane Thickness

Roof assemblies should be installed to match or exceed the service life of the overburden systems. The risk of installing a less robust system, such as with a thinner single-ply membrane, could require roof replacement prior to the end of overburden's service life. An unprotected roof membrane should offer enhanced protection against the effects of UV, high service temperatures, punctures, and added foot traffic to help ensure that the roof's life and overburden will match. For single-ply membranes, thicker membranes can provide protection against punctures from the extra foot traffic for overburden service and maintenance. Single-ply membrane thickness significantly improves impact resistance (such as by dropping a tool) by almost 80 percent from 45 mil to an 80 mil membrane. A thicker single-ply membrane also provides additional protection to both UV and high surface temperatures, which is important since a thicker overall membrane provides more thickness over the scrim (reinforcing layer). This portion of the membrane provides weather resistant properties, including UV resistance.

A roof membrane in an IRMA assembly should have added protection to punctures and abrasion from roof elements above it, including root damage in a vegetative assembly. For installations where the membrane is on top, it is a best practice to install walkway pads around solar arrays or exposed areas of single-ply membranes to protect against the added foot traffic to service the installations.

Membrane Attachment

There are two broad categories of roof attachment; mechanically attached via use of fasteners, and adhered.

Attachment methods should be reviewed for ease of installation and energy efficiency. Energy efficiency roof assemblies can be directly related to thermal bridging, which occurs when components allow for heat transfer through the roof assembly. Heat loss means that the mechanical equipment will have to work harder to maintain the desired interior temperatures. Thermal bridging occurs at gaps or discontinuities between materials, such as at fasteners in a mechanically attached system. Particularly where the fasteners penetrate the entire assembly from the membrane through the insulation and into the deck, the fasteners provide a direct thermal path from the exterior to the interior.

Mechanically attached single-ply systems are also subject to billowing in high wind events. Billowing, or fluttering, of a membrane is when wind causes a negative pressure by pulling interior air into the roof assembly creating uplift force on the roof assembly. Over time, it can cause stress and fatigue on the mechanical attachments and membrane. Interior air that is pulled into the roof assembly equates to energy loss since often the temperature controlled air may warm or cool based on the temperature of the membrane. Overburden installed over mechanically attached systems may billow and flutter with the roof membrane during high wind events. As the membrane flutters and moves, the overburden will shift on the membrane, causing abrasion of the membrane surface. The overburden may also experience stress and fatigue due to movement, which could decrease their overall service lives.

Adhered system where only the first layer of insulation is mechanically attached, significantly reduces interior air loss and thermal bridging.

Adhered systems that do not use mechanical fasteners greatly reduce thermal bridging by eliminating the path from the interior of the roofing assembly to the exterior. Adhering also prevents billowing of the membrane, by mitigating the interior air that can be brought into the roof assembly.

Insulation

Insulation is critical in roofing assemblies for overall energy efficiency of the building. The higher the R-value, expressed per inch, the better the thermal performance of the insulation and its effectiveness at maintaining interior temperatures. Higher R-value per inch means less material is required to achieve the desired insulating value. In overburden systems, the roof system thickness can have an impact on the overall design of the overburden system. For example, roof flashings need to extend a minimum of 8-inches past the completed installation. For vegetative systems, this means that the flashing must extend 8-inches past the vegetation. Flashing heights are of particular importance at mechanical curbs and parapets. For a new construction installation, it is possible to raise the heights of the curbs and parapet walls to the desired height, however, in an existing building, this can be problematic.

Insulation boards should be installed so that the joints are staggered and offset, and several layers of insulation should be installed rather than just one thick layer. Gaps between boards can decrease insulating ability by allowing thermal loss, an increased condensation potential if air travels into the roof assembly. Air brings moisture, which if allowed to condense, can saturate the insulation boards. Wet insulation has an R value of approximately zero, which is like having no insulation at all.

Staggered and offset insulation board joints.

Coverboards

Inclusion of a coverboard must be considered after selection of the overburden. Rooftops with overburden assemblies not only have increased foot traffic on the roof, but are also an added dead load on the roof assembly. High traffic areas should always be protected with walkway pads. Adding a high-compressive-strength coverboard below the roof membrane will enhance system protection, including compressive strength. Coverboards provide added protection against penetration, including tools dropped by service contractors, wind-borne debris, and hail. A thicker coverboard increases its penetration resistance. The use of high-density polyiso insulation coverboards should be considered since they not only add protection to the roof assembly, but also add an R-value of 2.5 per half-inch.

Overburden Layout, Details & Flashings

Qualified design and construction professionals should be involved throughout design and construction phases of roof and overburden systems. Overburden layout should address access for installation and both roof and overburden maintenance throughout the component service lives.

Inadequate detailing or termination heights leave the roof assembly vulnerable to leaks. Improperly detailed or flashed components may be water-tight for a period of time, but will most likely fail prematurely. Removal of the overburden system for repairs can be an added difficulty and cost. It is good practice to allow penetrations, flashings, expansion joints, drains, and other critical roofing interfaces to be accessible for maintenance and repairs. Flashings should be installed in accordance with current NRCA guidelines and the roof manufacturer's construction details. Ballasted assemblies can block or inhibit drainage resulting in trapped water on the roof membrane. The overburden layout should leave portions of the roof around drains open for both access and drainage and be unimpeded by the overburden.

Summary

While the roof is the primary defense to prevent water entering into a building, due to the current market trends and legislation, this previously underutilized asset is being recognized by owners for the opportunity the roof offers. There are many overburden options and roof assembly considerations when meeting sustainability goals. Once the overburden type is selected, the roof needs to be determined, which depends on the type of overburden and the ultimate use of the roof space. The overburden's success depends on the roof assembly beneath. For installations such as solar or vegetation, the plants and solar array will need to be removed for repairs or replacement; so, a more robust membrane for the long-term durability and serviceability of the complete roof may be needed. A performance-based approach for energy efficiency requirements (insulation, thermal bridges, and air tightness) versus a prescriptive code minimum may be warranted to ensure a long-lasting roof and to minimize roof replacements over the life of the building.


*Resource: Roofing Contractors Associoation of British Columbia

About the Author

Kristin Westover, P.E., LEED AP O+M, is a Technical Manager of Specialty Installations for low-slope commercial roofing systems at GAF. She specializes in cold storage roofing assemblies where she provides insight, education, and best practices as it relates to cold storage roofing. Kristin is part of the Building and Roofing Science Team where she works with designers on all types of low-slope roofing projects to review project design considerations so designers can make informed roof assembly decisions.

Related Articles

GAF Shafter Plant
Building Science

GAF Scaling Environmental Product Declarations—Publishes 21 EPDs

At GAF, we're serious about our sustainability promise: to protect what matters most, including our people, our communities, and our planet. We recently published 21 new GAF product-specific Environmental Product Declarations (EPDs) as one way we're delivering on that promise.EPDs are critical to improving green building solutions. These standardized and third-party-verified documents outline the environmental impacts associated with a building product's life cycle—from raw material extraction to end-of-life disposal or reuse. Through the EPD creation process, we have been advancing on our sustainability goals, demonstrating our commitment to the environment and our customers, and increasing product sustainability in the roofing industry.Here's a look at our most recent progress and what's expected to come.GAF Sustainability GoalsThe 21 new EPDs are an exciting milestone toward our GAF 2030 Planet Goals, which have four focus areas: increase product transparency, reduce carbon emissions, drive circularity in the roofing sector, and divert operational waste. By 2030, we plan to publish EPDs for our entire commercial and residential core product portfolio. As we've scaled the GAF EPD creation process, through extensive life cycle assessments across our portfolio, we better understand the environmental impact of each stage in our products' life cycles. This opens up internal and external sustainability opportunities as we learn from, and analyze, our life cycle assessment results.Evolving to Product-Specific Environmental Product DeclarationsRoofing has long relied on industry-wide EPDs created from aggregate product data. As a result, our architecture, engineering, and construction (AEC) community members have had fewer opportunities to make informed sustainability choices around roofing materials.According to several sources, the built environment accounts for 39% of global energy-related carbon emissions worldwide. Collectively, we as a roofing industry could help reduce this number by increasing our transparency documentation. With more product-specific Environmental Product Declarations, companies and customers can make more informed product sustainability decisions.And although GAF currently has the highest overall number of transparency documents for roofing materials in the industry, we know we also have an opportunity to grow.GAF Uses Life Cycle Assessments to ImproveWe review product Life Cycle Assessments (LCAs) to understand the environmental impact of each product's production stages, from raw material extraction to end-of-life. Then, we can use that information to identify areas of improvement and make informed decisions to reduce a product's environmental impact, resulting in a reduction in embodied carbon. The knowledge we gain from our LCAs creates the potential for product improvements and new innovations to help further our 2030 Planet Goals.Looking Toward 2030 and BeyondWe're working hard to continue leading the industry with transparency documentation such as EPDs, Health Product Declarations, and Declare Labels. But we're not stopping there.We're fostering collaboration in our broader building, construction, and design space to help reduce the built environment's total carbon emissions. At GAF, sustainability isn't checking a box. We believe in and champion protecting our homes and our planet. By changing how we do business, we hope to improve how builders can build and, ultimately, how our world lives.Empowering the AEC CommunityTransparency and product sustainability documentation help us all build a better world. We're committed to empowering designers, builders, architects, and engineers by providing information about the lifecycle and environmental impact of GAF products whenever possible.Explore some of our most recent EPDs below.Polyiso InsulationEnergyGuard™ Barrier. Polyiso InsulationEnergyGuard™ HD and HD Barrier Polyiso Cover BoardEnergyGuard™ HD Plus Polyiso Cover BoardEnergyGuard™ NH Barrier Polyiso InsulationEnergyGuard™ NH HD Plus Polyiso Cover BoardEnergyGuard™ NH HD Polyiso Cover BoardEnergyGuard™ NH Polyiso InsulationEnergyGuard™ NH Ultra Polyiso InsulationEnergyGuard™ NH Ultra Tapered Polyiso InsulationEnergyGuard™ Polyiso InsulationEnergyGuard™ Ultra Polyiso InsulationUltra HD Composite InsulationTPO Single-Ply MembraneEverGuard® TPO Extreme Fleece-backEverGuard® TPO ExtremeEverGuard® TPOEverGuard® TPO Fleece-backEverGuard® SA TPO Self-Adhered Roof MembranePVCEverGuard® PVCEverGuard® PVC Fleece-back Roof CoatingsHydroStop® System GAF Acrylic Top CoatLooking to explore more sustainable design solutions? You can learn how GAF is investing in our people, our planet, and progress for a more sustainable future, here.

By Authors Aly Perez

August 13, 2024

GAF Burgaw VIBE Group in front of a Habitat for Humanity build
In Your Community

How GAF's VIBE ERG Supports Veteran Employees and Their Local Communities

A group of local GAF employees in Burgaw, North Carolina, is making a difference for veterans and the community as a whole. In 2024 alone, Veteran Involvement Brings Excellence (VIBE) has undertaken several initiatives to give back to Burgaw as well as all who live and work there.Bill Price, GAF production supervisor II at the Burgaw manufacturing plant, is the champion for the group. He recently sat down to discuss VIBE's latest projects and share insight into its motivations.What Is the VIBE ERG at GAF?VIBE is an employee resource group (ERG) available for all GAF employees. It focuses on the needs of veterans who work at GAF, provides a place for employees to share their experiences, and helps foster opportunities for them to give back to their communities.Each GAF plant has a VIBE group and facility leader that organizes the team. GAF leadership supports each group and its community efforts.The VIBE ERG's mission is to create a supportive environment for veterans and active duty members from all military branches. The group's core values are integrity, duty, honor, and respect. VIBE provides personal support for members and helps them manage the realities of being a veteran, such as applying for benefits.Each VIBE group can work on or be involved in whatever projects they wish. While their primary focus is to support veterans, they also strive to give back to the local communities they live and work in.VIBE Projects in BurgawThe VIBE ERG at the Burgaw plant meets regularly to discuss the activities they want to get involved in. This year, the group has participated in several projects:17 GAF-employed veterans volunteered for the second annual Habitat for Humanity veteran's build, which GAF donated roofing materials for.Team members participated in a food and clothing drive for a local women's shelter.A local veteran service officer visited the plant to help workers learn about—and gain access to—benefits and resources.In honor of Memorial Day, VIBE provided an opportunity for volunteers to place flags at veterans' tombstones at Coastal Carolina State Veterans Cemetery and Wilmington National Cemetery.That's not all the group has planned for. Future initiatives include hosting Toys for Tots at the plant, adopting a highway in honor of veterans, representing GAF at a booth for the Burgaw Blueberry Festival, and continuing to support local veterans in need.How VIBE Impacts GAF and the CommunityThe Burgaw facility, which employs about 247 people, has one of the largest veteran groups within GAF, totaling 28 members. The facility manufactures ventilation products, such as roof vents, foundation vents, turbines, and heating and cooling ductwork."The group has brought the veterans at the plant together to work toward a common goal and also given everyone the comradery they were accustomed to from when they were in the service," Price says. "I think this has had an impact not only on the employees involved but also on the plant as a whole. All of us involved enjoy being part of the team and giving back to those in need."Price notes that each project the group has been a part of has been well received. "We received many thanks from the families that were receiving assistance from the Habitat build and also from the staff at the local women's shelter during the food and clothing drive," he says. "I have no doubt that as we continue to be involved with more events within the community, it will only get better."Giving Back While Looking AheadGAF believes in giving back to its employees and the communities they work in. VIBE is just one of seven GAF ERGs making a difference in team members' lives and those most important to them.Curious to learn more about the opportunities and culture at GAF? Visit our GAF Careers page.

By Authors Dawn Killough

August 08, 2024

GAF Community Matters team members repair a storm-damaged roof on a home in Puerto Rico
In Your Community

GAF Supports Puerto Rico Hurricane Recovery

As part of its mission to build resilient communities, GAF Community Matters has supported Puerto Rico hurricane recovery efforts through roofing material donations, roof installation trainings, and team members' hard work. This has had a multifaceted impact on the island and the people who call it home.Hurricane Maria Hit HardHurricane recovery services are needed as urgently today as they were in 2017 when Hurricane Maria struck, leaving behind 15-foot deep floodwaters, about $90 billion in damage, an estimated 2,975 lives lost, and the longest power outage in US history. For 11 months, residents waited for electricity to be fully restored.Short-term disaster relief poured in post-storm. But years after the news cycles ended, Puerto Rico still remains—metaphorically—underwater. Schools and hospitals have fallen into hurricane-related disrepair, and insufficient fixes to the power grid cause frequent blackouts and brownouts.To make matters worse, hurricane-damaged homes that weren't repaired suffer compound damage from years of subsequent storms and exposure.Puerto Ricans Stand StrongThe people of Puerto Rico are strong and proud, determined to rebuild. However, the availability of needed resources poses a considerable challenge.For many, the funds needed to repair an unsafe roof are simply out of reach. Economic opportunities are scarce, and the government is heavily in debt. The US Census Bureau reported that 42% of Puerto Rican people are in poverty.Unfortunately, lower-income Puerto Rican households most vulnerable to Hurricane Maria were also least able to recover from the financial strain of repairing storm damage. With wind speeds up to 155 mph, extensive flash flooding, and wind tunnels ripping through the mountainous terrain, homes throughout this area were no match for the Category 4 hurricane.GAF Helps Build ResilienceTo help those impacted, GAF partnered with Team Rubicon, local nongovernmental organizations, and community members through the GAF Community Matters initiative to assist in Puerto Rico hurricane recovery. Since hurricane Maria recovery efforts began in 2017, GAF has donated materials for over 500 roofs and helped install them, bringing relief and shelter to families all over the island.This work has meant more to this community than just keeping their homes dry. Mr. Alfredo—a homeowner who received a new GAF roof—said, "There is nothing more important in life than to have a place to come home to, spend quality time in, sit, and be at peace."For all of Puerto Rico's strength and perseverance, many families still live in unsafe conditions due to hurricanes. GAF can't stop storms, but it can help build resilience.To that end, in addition to installing roofs, GAF, through the GAF Community Matters initiative and GAF Roofing Academy program, provided free roof installation trainings to local organizations in vulnerable Puerto Rican communities. Educating communities on roof installation creates a greater ability to adapt and bounce back when the next storm hits.Joining the Effort for GoodIn addition to its focus on roofing innovation, GAF remains committed to partnering with local organizations to build resilience in communities across the country. Team members will continue to donate time and materials to support and strengthen communities wherever the need may be.Curious to learn more about this project and other initiatives GAF is involved in? Explore GAF Community Matters.

By Authors Annie Crawford

August 07, 2024

Don't miss another GAF RoofViews post!

Subscribe now