RoofViews

Commercial Roofing

What Is a Built Up Roof?

By Karen L Edwards

October 07, 2020

the layers of a built up roof

A built up roof system is a popular choice for buildings with low-slope or flat roofs. Often referred to by the acronym BUR, this system has been used for 100-plus years in the U.S.

What makes BUR systems so popular? They are known for providing excellent protection due to their redundant nature because they are made up of multiple layers of ply sheets and asphalt. These layers are then topped off by a cap sheet or a flood coat of asphalt and granules. The multiple plies provide resistance to weather and heavy-duty protection for the building.

Components of a Built Up Roof System

Built up roof systems can be constructed in a variety of ways. Often, the built up roof system starts with a base sheet installed over the polyisocyanurate (polyiso) insulation or cover board, typically through the use of mechanical fasteners. The base sheet serves as the bottom layer of waterproofing protection for the roof system and provides a surface that will allow subsequent sheets to be adhered with hot asphalt.

A layer of asphalt is applied over the base sheet for the installation of reinforcing felt, sometimes called a ply sheet. Many people picture kettles of hot asphalt being mopped onto the base sheet in order to install the ply sheet, but advances in manufacturing have created alternative options. For instance, contractors can choose to use cold-applied adhesive solutions instead of hot mopping asphalt and kettles.

When saturated in asphalt or cold-applied adhesive, the reinforcing felt creates a barrier that provides additional resistance to water intrusion. The process is repeated with the application of asphalt or cold-applied adhesive, followed by the installation of additional plies until the desired number of plies is achieved. The system is then either capped with a mineral-surfaced cap sheet or topped off by covering the top layer with asphalt and spreading gravel or slag.

This video provides an easy-to-understand look at the layers that make up a typical four-ply system.

Benefits of Built Up Roofing

Built up roofing owes its popularity to a number of benefits it provides, including:

  • Time-tested technology. It's hard to argue with more than 100 years of history.
  • Redundancy. Built up roofs provide many layers of protection, so if the top layer is damaged, the additional layers below will continue to protect the building from water intrusion.
  • Guarantees/Warranties. BUR systems may be eligible for guarantees or warranties of up to 20 years, depending on the materials used and the system installed. Check with the manufacturer for guarantee/warraaty requirements and coverage.
  • Reflective cap sheets available. White-coated cap sheets are availableto help reflect the sun's rays away from the building, which can help lower internal termperatures.

There are many options when it comes to choosing an asphaltic roofing system, each with different benefits. When choosing your system, the best place to start is by determining the characteristics you want in the roof. You can review this commercial product brochure to see a comparison of the different products, learn about their features, and browse available guarantees. Of course, you can always talk to GAF to help you find the best solution.

About the Author

Karen L. Edwards is a freelance writer for the construction industry and has a passion for roofing, having worked in the industry for 20 years.

Related Articles

Two roofers installing a silicone roof coating on a commercial building.
Commercial Roofing

The Advantages of Silicone Roof Coatings

As a commercial roofing contractor, you're responsible for choosing the right materials for each job. But with so many options available, making a decision can be difficult.Increasingly, industry professionals have been turning to silicone roof coatings for their strength and durability. These coatings can help extend the life of a structurally sound roof and potentially save property owners time and money by delaying a full reroof. Plus, their restoration properties work great with most commercial roofing systems, like EPDM, built-up, bitumen, and metal roofs. What Are Silicone Roof Coatings?Silicone coatings are high-performance, waterproof protective roof coatings. Adding this coating to a structurally sound roof can help extend the life of the existing roof. Silicone is inorganic, so it can maintain its properties in inclement weather conditions. It's also flexible and can absorb most normal roof movement to help avoid cracking and losing its protective features.Benefits of Silicone Roof CoatingsIn addition to flexibility and extending the life of the existing roof, silicone coatings offer several other benefits. Laura Soder, senior product manager for liquids and coatings at GAF, explains that GAF silicone coatings are designed to help protect against leaks and provide related advantages.UV Ray ProtectionThe major benefit of silicone coatings is ultraviolet (UV) ray protection. "GAF silicone is formulated with titanium dioxide, providing exceptional UV stability and high solar reflectance," she says. This UV protection can help lower roof top temperatures, which may translate into more efficient operation of roof top units.Cost-EffectiveSilicone coatings are cost-effective solutions that can help delay the cost of materials and labor needed to replace the entire roof. They work great with most commercial roofs and pair exceptionally well with metal roofs.Restores and Helps Extend the Life of the Existing RoofSoder notes that silicone coatings adhere well to metal roofs, making them an excellent way to extend the service life of metal roofs. Before application, brush away light rust or spot-treat heavier rust. "There are a lot of metal roofs out there, and for those that are structurally sound and require only moderate restoration, you can easily add years to the roof's life by coating them with silicone," she says.Moisture-ResistantSilicone coatings are also known for their moisture-resistant capabilities. Since silicone is inorganic, it resists degradation in areas that pond water, making it an ideal choice in areas that experience rain or snow.Works in Hot and Cold WeatherSilicone has a wide temperature application range. Because it doesn't contain water, you can apply it at lower temperatures than acrylic and other roof coatings. It provides a monolithic, seamless waterproofing layer over existing metal roofs. Silicone will also flex with metal in cold and hot weather.How Silicone Compares to Elastomeric CoatingsCompared to acrylic and other elastomeric roof coatings, silicone has some advantages.Acrylics are water-based protective coatings with UV resistance —but they shouldn't be installed where there is ponding water, as they can break down and start delaminating. Silicone is a moisture-cure material, meaning it reacts with moisture in the air and cures to a finished film.Soder explains that both materials are flexible and appropriate for use over metal. But if you have any standing water, acrylic isn't the best choice. "While silicone is more expensive, it typically weathers at a much slower rate than other coatings," she says. That said, one of silicone's drawbacks compared to other elastomeric roof coatings is that it's slippery when wet.Navigating Installation and ApplicationWhile silicone coatings can help extend the life of an existing roof, Soder notes it's best to install the coating before the end of the existing membrane's service life.Since leaks tend to happen at roof seams, add silicone sealant to these areas. Sealants are formulated differently than coatings—they use different silicone polymers, giving them a heavier body and stronger build. Silicone sealants are formulated for high-stress areas and can help absorb movement at critical points in the roof. They work hand in hand with a silicone coating to protect the roof.Before you apply any coating, ensure the roof is clean, dry, and sound. "Clean means free of contaminants, dust, oils, leaves, and other debris," Soder says. You can use GAF Cleaning Concentrate to power wash your roof.Since silicone is moisture-cure, the roof needs to be dry before applying. Coating over a wet surface can affect adhesion and is often one of the biggest mistakes you can make when installing. You want the coating to start the curing process from moisture in the air, not from moisture on the roof.How to Apply Silicone CoatingsApplying a silicone roof coating involves five steps:Clean any debris off the roof and test that the coating will properly adhere to the surface.Ensure the roof is in sound condition. Repair broken sheet metal, and replace missing or damaged fasteners.Treat all seams and fasteners with silicone sealant like GAF Silicone Mastic. Apply it at 60 mils or 1/16-inch wet thickness with a brush.Use the same sealant on any curbs, penetrations, and drains.Finally, apply the silicone roof coating to the entire roof. Some coatings, like GAF Unisil Silicone, require two coats, while others such as the GAF High Solids Silicone may need just one.Understanding Maintenance Needs and LongevityMaintaining a silicone roof coating is essential. Addressing issues before they become problematic can help minimize the cost of repairs and maximize the service life of the coating.As the roof flexes over time, issues with the seams might develop. A good rule of thumb is to get a roof inspected every six months. Applying a silicone sealant can help address areas with leaks or cracks. Silicone sealant is UV stable and doesn't require a top coat, according to Soder.Adding Silicone Roof Coatings to Your ToolboxWith many benefits, silicone roof coatings should be front of mind when planning roof restoration projects. And with several options available, you can choose the best type for each roof you work on. Have more questions about roof coatings? GAF technical service reps are more than happy to assist you on your next coating project.

By Authors Mark Soto

October 15, 2024

Installation of ISO Board and TPO on a Roof
Building Science

Roof Insulation: A Positive Investment to Reduce Total Carbon

Have you ever thought about building products reducing the carbon dioxide emissions caused by your building? When considered over their useful life, materials like insulation decrease total carbon emissions thanks to their performance benefits. Read on for an explanation of how this can work in your designs.What is Total Carbon?Total carbon captures the idea that the carbon impacts of buildings should be considered holistically across the building's entire life span and sometimes beyond. (In this context, "carbon" is shorthand for carbon dioxide (CO2) emissions.) Put simply, total carbon is calculated by adding a building's embodied carbon to its operational carbon.Total Carbon = Embodied Carbon + Operational CarbonWhat is Embodied Carbon?Embodied carbon is comprised of CO2 emissions from everything other than the operations phase of the building. This includes raw material supply, manufacturing, construction/installation, maintenance and repair, deconstruction/demolition, waste processing/disposal of building materials, and transport between each stage and the next. These embodied carbon phases are indicated by the gray CO2 clouds over the different sections of the life cycle in the image below.We often focus on "cradle-to-gate" embodied carbon because this is the simplest to calculate. "Cradle-to-gate" is the sum of carbon emissions from the energy consumed directly or indirectly to produce the construction materials used in a building. The "cradle to gate" approach neglects the remainder of the embodied carbon captured in the broader "cradle to grave" assessment, a more comprehensive view of a building's embodied carbon footprint.What is Operational Carbon?Operational carbon, on the other hand, is generated by energy used during a building's occupancy stage, by heating, cooling, and lighting systems; equipment and appliances; and other critical functions. This is the red CO2 cloud in the life-cycle graphic. It is larger than the gray CO2 clouds because, in most buildings, operational carbon is the largest contributor to total carbon.What is Carbon Dioxide Equivalent (CO2e)?Often, you will see the term CO2e used. According to the US Environmental Protection Agency (EPA), "CO2e is simply the combination of the pollutants that contribute to climate change adjusted using their global warming potential." In other words, it is a way to translate the effect of pollutants (e.g. methane, nitrous oxide) into the equivalent volume of CO2 that would have the same effect on the atmosphere.Today and the FutureToday, carbon from building operations (72%) is a much larger challenge than that from construction materials' embodied carbon (28%) (Architecture 2030, 2019). Projections into 2050 anticipate the operations/embodied carbon split will be closer to 50/50, but this hinges on building designs and renovations between now and 2050 making progress on improving building operations.Why Insulation?Insulation, and specifically continuous insulation on low-slope roofs, is especially relevant to the carbon discussion because, according to the Embodied Carbon 101: Envelope presentation by the Boston Society for Architecture: Insulation occupies the unique position at the intersection of embodied and operational carbon emissions for a building. Insulation is the only building material that directly offsets operational emissions. It can be said to pay back its embodied carbon debt with avoided emissions during the building's lifetime.A Thought Experiment on Reducing Total CarbonTo make progress on reducing the total carbon impact of buildings, it is best to start with the largest piece of today's pie, operational carbon. Within the range of choices made during building design and construction, not all selections have the same effect on operational carbon.When making decisions about carbon and energy reduction strategies, think about the problem as an "investment" rather than a "discretionary expense." Discretionary expenses are easier to reduce or eliminate by simply consuming less. In the example below, imagine you are flying to visit your client's building. Consider this a "discretionary expense." The input on the far left is a given number of kilograms of carbon dioxide equivalent (CO2e) generated for the flight, from the manufacturing of the airplane, to the fuel it burns, to its maintenance. The output is the flight itself, which creates CO2 emissions, but no durable good. In this case, the only CO2 reduction strategy you can make is to make fewer or shorter flights, perhaps by consolidating visits, employing a local designer of record, or visiting the building virtually whenever possible. Now consider the wallpaper you might specify for your client's building. It involves a discretionary expenditure of CO2e, in this case, used to produce a durable good. However, this durable good is a product without use-phase benefits. In other words, it cannot help to save energy during the operational phase of the building. It has other aesthetic and durability benefits, but no operational benefits to offset the CO2 emissions generated to create it. Your choices here are expanded over the previous example of an airplane flight. You can limit CO2 by choosing a product with a long useful life. You can also apply the three Rs: reduce the quantity of new product used, reuse existing material when possible, and recycle product scraps at installation and the rest at the end of its lifespan. In the final step in our thought experiment, consider the insulation in your client's building. As before, we must generate a certain amount of CO2e to create a durable good. In this case, it's one with use-phase benefits. Insulation can reduce operational energy by reducing heat flow through the building enclosure, reducing the need to burn fuel or use electricity to heat and cool the building. The good news is that, in addition to the other strategies considered for the flight and the wallpaper, here you can also maximize operational carbon savings to offset the initial embodied carbon input. And, unlike the discretionary nature of some flights and the often optional decision to use furnishings like wallpaper, heating and cooling are necessary for the functioning of almost all occupied buildings.Based on this example, you can consider building products with operational benefits, like insulation, as an "investment." It is appropriate to look at improving the building enclosure and understanding what the return on the investment is from a carbon perspective. As the comparison above demonstrates, if you have a limited supply of carbon to "invest", putting it into more roof insulation is a very smart move compared to "spending" it on a discretionary flight or on a product without use-phase carbon benefits, such as wallpaper.This means we should be careful not to measure products like insulation that save CO2e in the building use-phase savings only by their embodied carbon use, but by their total carbon profile. So, how do we calculate this?Putting It to the TestWe were curious to know just how much operational carbon roof insulation could save relative to the initial investment of embodied carbon required to include it in a building. To understand this, we modeled the US Department of Energy's (DOE) Standalone Retail Prototype Building located in Climate Zone 4A to comply with ASHRAE 90.1-2019 energy requirements. We took the insulation product's embodied energy and carbon data from the Polyisocyanurate Insulation Manufacturers Association's (PIMA) industry-wide environmental product declaration (EPD).To significantly reduce operational carbon, the largest carbon challenge facing buildings today, the returns on the investment of our building design strategies need to be consistent over time. This is where passive design strategies like building enclosure improvements really shine. They have much longer service lives than, for example, finish materials, leading to sustained returns.Specifically, we looked here at how our example building's roof insulation impacted both embodied and operational carbon and energy use. To do this, we calculated the cumulative carbon savings over the 75-year life of our model building. In our example, we assumed R-30 insulation installed at the outset, increased every 20 years by R-10, when the roof membrane is periodically replaced.In our analysis, the embodied CO2e associated with installing R-30 (shown by the brown curve in years -1 to 1), the embodied carbon of the additional R-10 of insulation added every 20 years (too small to show up in the graph), and the embodied carbon represented by end-of-life disposal (also too small to show up) are all taken into account. About five months after the building becomes operational, the embodied carbon investment of the roof insulation is dwarfed by the operational savings it provides. The initial and supplemental roof insulation ultimately saves a net of 705 metric tons of carbon over the life of the building.If you want to see more examples like the one above, check out PIMA's study, conducted by the consulting firm ICF. The research group looked at several DOE building prototypes across a range of climate zones, calculating how much carbon, energy, and money can be saved when roof insulation is upgraded from an existing baseline to current code compliance. Their results can be found here. Justin Koscher of PIMA also highlighted these savings, conveniently sorted by climate zone and building type, here.Support for Carbon Investment DecisionsSo how can you make sure you address both operational and embodied carbon when making "carbon investment" decisions? We've prepared a handy chart to help.First, when looking at lower-embodied-carbon substitutions for higher-embodied-carbon building materials or systems (moving from the upper-left red quadrant to the lower-left yellow quadrant in the chart), ensure that the alternatives you are considering have equivalent performance attributes in terms of resilience and longevity. If an alternative material or system has lower initial embodied carbon, but doesn't perform as well or last as long as the specified product, then it may not be a good carbon investment. Another consideration here is whether or not the embodied carbon of the alternative is released as emissions (i.e. as part of its raw material supply or manufacturing, or "cradle to gate" stages), or if it remains in the product throughout its useful life. In other words, can the alternative item be considered a carbon sink? If so, using it may be a good strategy.Next, determine if the alternative product or system can provide operational carbon savings, even if it has high embodied energy (upper-right yellow quadrant). If the alternative has positive operational carbon impacts over a long period, don't sacrifice operational carbon savings for the sake of avoiding an initial embodied product carbon investment when justified for strategic reasons.Last, if a product has high operational carbon savings and relatively low embodied carbon (lower-right green quadrant), include more of this product in your designs. The polyiso roof insulation in our example above fits into this category. You can utilize these carbon savings to offset the carbon use in other areas of the design, like aesthetic finishes, where the decision to use the product may be discretionary but desired.When designing buildings, we need to consider the whole picture, looking at building products' embodied carbon as a potential investment yielding improved operational and performance outcomes. Our design choices and product selection can have a significant impact on total carbon targets for the buildings we envision, build, and operate.Click these links to learn more about GAF's and Siplast's insulation solutions. Please also visit our design professional and architect resources page for guide specifications, details, innovative green building materials, continuing education, and expert guidance.We presented the findings in this blog in a presentation called "Carbon and Energy Impacts of Roof Insulation: The Whole[-Life] Story" given at the BEST6 Conference on March 19, 2024 in Austin, Texas.References:Architecture 2030. (2019). New Buildings: Embodied Carbon. https://web.archive.org/web/20190801031738/https://architecture2030.org/new-buildings-embodied/ Carbon Leadership Forum. (2023, April 2). 1 - Embodied Carbon 101. https://carbonleadershipforum.org/embodied-carbon-101/

By Authors Elizabeth Grant

September 18, 2024

Roofers install GAF EverGuard® TPO Quick-Spray Adhesive on a flat roof
Commercial Roofing

Minimizing Disruption When Repairing Roofs on Schools and Hospitals

As a roofing contractor, you know how noisy roofing projects can get. And when repairing or replacing roofs on institutional properties, like schools and healthcare centers, it's often not possible to remove occupants during the project's duration.Accordingly, minimizing disruption at these facilities is key, as students need to be able to concentrate and patients must be protected as they recover. Here are common disruptions to consider and how to reduce them, with insight from GAF Building and Roofing Science Research Lead, Elizabeth Grant.Common Disruptions on Construction SitesYou have several challenges to consider when working on schools or other facilities with ongoing operations, including noise, odors, and occupants' safety.Elevated VolumeHeightened noise levels can affect both students and patients. At schools, loud sounds can affect students' ability to learn and concentrate. Likewise, construction noise can impact patients' ability to rest and recuperate in healthcare facilities.Strong OdorsWhen using certain roofing materials on big job sites—like powerful adhesives or hot-mopped roofing systems—odors may infiltrate the building. This may be distracting and affect the comfort of students and patients.Heavy MachineryUnloading and staging material can also cause disruption, as materials must be staged onsite to be ready for installation as the job progresses. This often involves using heavy equipment, such as cranes and lifts. Proper safety protections must be in place to ensure worker and occupant safety.Roofing Products That Minimize DisruptionUnfortunately, there's no good time for a roof repair or replacement at a medical facility. You may be able to complete school projects when school is out of session, but that isn't always the case if a leak or storm damage occurs.The best (and most proactive) way to minimize disruption is to use durable, long-lasting materials, as this reduces the number of times crews need to work on the roof.Single-Ply MembranesGrant recommends a robust single-ply membrane or a system with some redundancy, such as a multi-ply modified bitumen. She also suggests leveraging a hybrid system, composed of a multi-ply modified bitumen system with a single-ply top sheet for reflectivity.Cover and Substrate BoardsFor resiliency against noise-causing conditions such as hail and foot traffic, Grant suggests using cover and substrate boards. Cover boards are installed on top of the insulation and provide sound insulation, while substrate boards are installed directly on the roof deck under the insulation."If you have a really noisy location, and you want to keep people inside from hearing a lot of disruption, having cover and substrate boards included in the system can be really important," says Grant.Adhesives and FastenersAnother change you can make to reduce disruption is using adhesive to attach roofing products instead of mechanically fastening them. This helps avoid the noise from driving fasteners into the roof deck—and enables a faster installation.Grant notes that, depending on the FM and wind ratings required, it may be possible to adhere all the system components, including the insulation, cover boards, and membrane. An adhesive like GAF EverGuard® TPO Quick-Spray Adhesive can effectively adhere TPO and PVC roofing materials. The product has a high initial tackiness, allowing for faster installation than traditional adhesives. You can also opt for self-adhering products (vapor retarder, pipe boots, TPO roofing, etc.), which can further reduce installation time by eliminating adhesive application from the process.Materials That Shorten Project TimelinesA creative and efficient way to minimize disruption at school and hospital job sites is to reduce the time crews are on the roof. By taking advantage of time-saving materials, you can reduce the risk to workers and occupants, increase productivity, and ultimately take on more work.In addition to the Quick-Spray Adhesive, GAF offers several materials designed to cut installation time and labor:Wider rolls of TPO (12 feet instead of 10 feet) can help crews to spend less time installing systems on wide-open roofs.Insulation installation is easier with lightweight Ultra HD Composite Insulation, and it eliminates the need for one full application of adhesive in adhered systems.TPO self-adhered membrane can cut installation time by as much as 60% compared to installation using traditional bucket and roller adhesives.Experienced Support That Streamlines WorkIn addition to product and material selection, you can minimize disruptions by having GAF professionals from the Tapered Design Group help design the tapered insulation system. These professionals can help you with a variety of services, such as:Tapered insulation designTapered insulation Inventory management and orderingBudget friendly alternativesTapered insulation systems are designed to improve the drainage slope on roofs with substrate damage or without enough slope. The tapered design team at GAF "balances suitable slope with the least amount of material," Grant says. "To help with saving money, saving material, and saving time."This group designs tapered insulation systems that can be loaded and labeled strategically to minimize material handling and time spent looking for and transporting materials. Products are bundled by roof area, and a color-coded plan distinguishes areas for each bundle. Materials are precut and specifically designed for each project.Additional Tools to Save Time and LaborTwo other GAF tools can help you reduce the time spent on projects: GAF QuickSite™ and GAF QuickMeasure™.GAF QuickSite™GAF QuickSite™ provides the information you need before approaching a potential customer. It gives you a snapshot of local codes (important if you're working in an unfamiliar location), a 10-year wind and hail history, historical photographs documenting changes over time, and parcel information (including size and sales dates).GAF QuickMeasure™GAF QuickMeasure™ provides complete roof measurements including parapet wall lengths, heights and widths to help create estimates, past views showing how a roof may have changed over time, grid-lined paper for buildings with predominate pitch of 0 or 1, and a DXF file output for CAD.With the help of GAF QuickSite™, GAF QuickMeasure™, and the Tapered Design Group, you can confidently give your healthcare clients and school customers accurate estimates for suitable roofing products to meet their needs. These tools can also minimize disruption to building occupants and help building owners select durable, long-lasting products that will protect their investments for years to come.Leveraging GAF Professionals' ExperienceWhen working on schools, hospitals, and other important institutions, you're working to satisfy not only your clients but the individuals visiting these locations. By minimizing disruption, you can help ensure everyone involved experiences minimal disruption while you complete the project.For more insight into time- and labor-saving products and services, explore GAF School Rooftop Resources.

By Authors Dawn Killough

August 29, 2024

Don't miss another GAF RoofViews post!

Subscribe now