RoofViews

Toitures résidentielles

Tout sur les clous de toiture pour bardeaux

By Mark Soto

28 mars 2023

A coil of roofing nails on a new roof in progress

Même les plus petits détails ont leur rôle dans l'efficacité et l'intégrité d'un toit. Les bardeaux et le solin font partie des matériaux de toiture les plus visibles, et les clous de toiture sont souvent négligés bien qu'ils soient tout aussi importants que les éléments apparents. En outre, étant donné qu'ils peuvent grandement varier en tailles, en matériaux et en longueurs, utiliser les mauvais clous pour sécuriser certaines zones peut entraîner toutes sortes de problèmes.

Types of Roofing Nails

When nailing shingles, roofers mostly choose from among these four common types of roofing nail:

  • Typical roofing and ring-shank nails are the most commonly used. Typical roofing nails may have a smooth or circular unconnected rings around the body to help them maintain grip in the deck. Ring shank nails have connected rings around the shaft which give them superior withdrawal resistance during high winds. Either nail will keep shingles securely attached to the roof when installed according to the manufacturer's instructions. That said, ring shank nails have superior withdrawal resistance—which is why they're typically used in high-wind areas and are often required by local codes. Both of these nail types also offer strength and the ability to penetrate the deck below with ease.

  • Square and round cap nails are more commonly used for roof underlayment than shingles. The larger caps provide holding power that keeps the underlayment material in place using fewer nails.

Types of Roofing Nail Materials

What the nail is made of is often just as important as the type of nail:

  • Galvanized steel: While less corrosion-resistant than stainless steel, these nails are popular as they still have strong corrosion- and rust-resistance (courtesy of their zinc coating) but cost much less than stainless steel. There are two main types: hot-dipped galvanized and electro-galvanized. Hot-dipped is more robust, since the nail is immersed in a melted zinc solution, which creates a strong coating. Electro-galvanized combines electricity with a less powerful chemical solution to create a thinner zinc coating.

  • Copper roofing nails are resistant to corrosion and can last much longer than steel. However, they're typically a more expensive option. Copper is more often used when installing long-lasting roofing materials like tile and clay. If you use copper flashing for the roof, it's best practice to use the same material for the nails. However, steel nails are acceptable, though mixing galvanized nails with copper can cause a galvanic reaction that leads to some corrosion in both.

  • Stainless steel nails are typically only used in environments very likely to cause corrosion, most commonly in coastal regions.

  • Aluminum nails are not as commonly used, especially in coastal areas since salt spray can damage the nail and may cause it to deteriorate prematurely.

Nails for Roof Underlayment, Flashing, and Sheathing

Different roof components call for different nails. For underlayment, use square cap nails for felt and round head for synthetics (both nail types come with either metal or plastic caps). When installing flashing, you can simply opt for the same nails for the shingles, as they don't require any special properties. For flashing and sheathing, standard roof nails will do the trick.

Hand-Driven Nailing vs. Pneumatic Nailer

You will need to decide whether to hand-drive the nails with a hammer or use a pneumatic nailer.

Using the pneumatic nailer is a much faster solution than hammering manually. Many shingles come with warranties that require you to install at least four nails per shingle, with some of them needing up to six. As well as time considerations, using a pneumatic nailer is obviously significantly less physically demanding than manual hammering.

That said, an upside of using a hammer is that you have better overall control over nail placement. You can ensure a nail is tightly fitted and properly penetrates the decking, which can help in the long term as issues may arise if a nail is over- or under-driven. When nails are over-driven-meaning they go well past the material below it-it can cause openings in the shingles which can lower wind resistance (among other issues). When under-driven, nails don't fully penetrate the decking, which can lead to loose or falling shingles and leaks over time.

Size and Length of Roofing Nails

Typically, a roofing nail measures anywhere from 1 to 2 inches. A roofing nail should be long enough to penetrate the shingle and then as the plywood or OSB decking beneath by at least 3/4 of an inch. The sheathing thickness can vary, so you may need longer nails depending on the decking used.

Keep in mind that some parts of the roof—like hip and ridge cap shingles, and ventilation accessories such as a ridge vent—require longer nails. Some premium or designer shingles may also require longer nails than standard 3-tab shingles, as they tend to be thicker (usually often consisting of two shingle strips fused together).

Another thing to note is that 3/4-inch or 7/8-inch nails may be used at open soffit areas so as to not completely penetrate the decking. Completely penetrating the decking can cause the material underneath-most often finished wood-to splinter as well as the nail to be visible from the ground.

Most manufacturers recommend using zinc-coated steel or aluminum, 10-12 gauge, barbed, deformed, or smooth shank roofing nails with heads 3/8" (10mm) to 7/16" (12mm) in diameter. Fasteners should be long enough to penetrate at least 3/4" (19mm) into wood decks or just through the plywood decks. Fasteners must be driven flush with the surface of the shingle. Over-driving will damage the shingle. Raised fasteners will interfere with the sealing of the shingles and can back out.

Apply Your Nail Knowledge in Practice!

While useful, having a good working knowledge of what materials to use for a job is only half the equation. If you'd like hands-on training to see how to apply your knowledge in practice—and given by some of the leading experts in roofing—check out the GAF CARE Contractor Training Center.

About the Author

Mark Soto is a freelance writer from Milwaukee, Wisconsin. He has comprehensive knowledge of home improvement projects based on his previous work. Mark comes from a family of DIYers and has worked with landscapers, plumbers, painters and other contractors. He also writes about camping and his enthusiasm for the outdoors.

Articles connexes

Asistentes a una conferencia escuchan a un panel de oradores.
Dans votre communauté

Conexión con la comunidad latina en la cumbre GAF Latinos in Roofing 2024

Durante los últimos años, GAF ha organizado la Expo Latinos in Roofing para reconocer, celebrar y empoderar a los contratistas e instaladores de techos latinos. Este foro proporciona un entorno cómodo y acogedor en el que es posible establecer contactos, recibir formación y adquirir conocimientos, todo en español.En su tercer año, la cumbre se ha convertido en un recurso confiable para la comunidad de contratistas de habla hispana que aspiran a obtener conocimientos sobre cómo mejorar y crecer sus negocios de construcción y mantenimiento de techos. Las sesiones educativas abarcan temas esenciales para el éxito empresarial, como ventas, restauraciones a cargo de aseguradoras, construcción y mantenimiento de techos comerciales, liderazgo, mercadotecnia y productos para techos.La primera Expo Latinos in Roofing de 2024 se celebró los días 21 y 22 de junio en Los Ángeles y contó con la asistencia de cientos de profesionales del sector. Este evento, en el que se hizo hincapié especial en el fomento de la comunidad, incluyó una serie de propuestas, como una sesión de mercadotecnia antes de la recepción y la oportunidad de asistir a un partido de los Dodgers de Los Ángeles en compañía de los nuevos contactos allí establecidos.Este es un resumen de lo que el evento ofreció a los asistentes y de las experiencias que éstos compartieron.Traspasar las barreras lingüísticasAlan López, capacitador de GAF CARE, explica que los eventos Latinos in Roofing se desarrollaron cuando notó que una mayor cantidad de contratistas de origen hispano asistían a los eventos de GAF organizados en inglés. Para muchos de ellos, el inglés era su segunda lengua, por lo que era más difícil aprender y asimilar toda la información, ya que parte de ella se perdía en la traducción. López recurrió a los directivos de GAF, quienes se entusiasmaron con la idea de ofrecer recursos para los contratistas latinos, y organizaron la primera exposición en 2019.Abad Sarate, director general de Asa Pro Roofing en Seattle (Estado de Washington), considera que el hecho de que la conferencia se desarrollara íntegramente en español fue fundamental para aprender y comprender la información presentada. "Para nosotros es muy importante entender el contenido en nuestro idioma principal. Es esencial", afirma. "Y contar con este tipo de conferencias para muchos contratistas latinos nos llena de orgullo", agrega. Y añade: "Cada vez son más los latinos propietarios de empresas de construcción de techos y, la verdad, me alegro mucho. Además, como latino, me siento muy orgulloso".Luis Velásquez, de Entrenando Latinos in Roofing, concuerda en que el hecho de que la cumbre se presentara en español fue importante para el éxito logrado entre los asistentes. "Nosotros, los latinos de primera generación, que no fuimos a la escuela y que venimos de países pobres, tenemos un obstáculo: no entendemos el inglés al 100 %, no somos totalmente bilingües", señala. "Por eso, cuando logramos entender lo que vemos y cómo podemos ponerlo en práctica, la ganancia es completa", indica y concluye: "Cuando pongamos conocimiento en nuestra cabeza, la cabeza pondrá dinero en nuestros bolsillos".Crear una tradición anual para los profesionales del techadoLa adquisición de conocimientos para el éxito empresarial fue uno de los temas clave de la edición de este año. Las sesiones informativas, las conferencias magistrales y las demostraciones sirvieron para que los asistentes conocieran nuevos productos y obtuvieran nuevos conocimientos, al tiempo que se relacionaban con otros latinos del sector de la construcción y el mantenimiento de techos. Muchos asistentes reiteraban su visita, lo que confirma el valor de este evento.Abad Sarate, quien ya ha asistido dos veces, explica que la reunión anual ha sido fundamental para el desarrollo de su empresa: "Ha sido una parte excepcional de nuestro crecimiento gracias a todo el conocimiento que adquirimos aquí", comparte. "Regresamos a casa con mucho más conocimiento. Y, a fin de cuentas, el conocimiento es poder. Incorporar ese conocimiento a la empresa nos ha beneficiado mucho", señala.Para Marcos Sierra, de Sierra Group Roofing & Solar, es ya la tercera vez que acude a la exposición por las oportunidades de establecer contactos y de formación que ofrece. "La razón por la que vuelvo es, primero, para ver a mis colegas de otras partes de Estados Unidos. En segundo lugar, porque cada vez que vengo aprendo algo nuevo. Y, en tercer lugar, para perfeccionarme, perfeccionarme y perfeccionarme para poder hacer crecer nuestro negocio", afirma.Apoyo a los contratistas más allá de la ExpoGAF puso en marcha la iniciativa Latinos in Roofing con el objetivo de crear recursos y una comunidad para contratistas e instaladores hispanohablantes. Desde su creación en 2017, la empresa ha visto prosperar a cada vez más miembros de la comunidad hispana.Los contratistas que asisten a las exposiciones Latinos in Roofing tienen acceso a las herramientas comerciales de GAF, con las que pueden aumentar sus márgenes de beneficio y reducir riesgos. También pueden trabajar para obtener la certificación de GAF y unirse al programa de contratistas certificados de élite. De este modo, cuando trabajen con clientes potenciales, pueden ofrecer la garantía de GAF, que aportará un valor añadido a sus propuestas.Los contratistas alcanzan el éxito gracias al apoyo que reciben, ya sea aumentando sus beneficios, desarrollando sus carteras de clientes o logrando la independencia financiera. Sarate puede dar fe de cómo la asistencia a estas exposiciones ha ayudado a su negocio. Se siente agradecido por todo el apoyo que GAF le ofrece.Unirse a la comunidadSi está listo para formar parte de una comunidad que realmente entiende sus necesidades, le ayudará a hacer crecer su negocio y le proporcionará recursos en su idioma preferido, visite GAF Latinos in Roofing. Podrá informarse sobre los recursos disponibles y las clases en línea, unirse al programa de fidelidad de GAF, obtener la certificación de GAF e inscribirse para asistir a futuros eventos.

Par les auteurs Karen L Edwards

24 octobre 2024

Installation of ISO Board and TPO on a Roof
Science du bâtiment

Isolation des toitures : un investissement positif pour réduire l’empreinte carbone

Avez-vous déjà pensé à des produits de construction qui réduisent les émissions de dioxyde causées par votre bâtiment? When considered over their useful life, materials like insulation decrease total carbon emissions thanks to their performance benefits. Read on for an explanation of how this can work in your designs.What is Total Carbon?Total carbon captures the idea that the carbon impacts of buildings should be considered holistically across the building's entire life span and sometimes beyond. (In this context, "carbon" is shorthand for carbon dioxide (CO2) emissions.) Put simply, total carbon is calculated by adding a building's embodied carbon to its operational carbon.Total Carbon = Embodied Carbon + Operational CarbonWhat is Embodied Carbon?Embodied carbon is comprised of CO2 emissions from everything other than the operations phase of the building. This includes raw material supply, manufacturing, construction/installation, maintenance and repair, deconstruction/demolition, waste processing/disposal of building materials, and transport between each stage and the next. These embodied carbon phases are indicated by the gray CO2 clouds over the different sections of the life cycle in the image below.We often focus on "cradle-to-gate" embodied carbon because this is the simplest to calculate. "Cradle-to-gate" is the sum of carbon emissions from the energy consumed directly or indirectly to produce the construction materials used in a building. The "cradle to gate" approach neglects the remainder of the embodied carbon captured in the broader "cradle to grave" assessment, a more comprehensive view of a building's embodied carbon footprint.What is Operational Carbon?Operational carbon, on the other hand, is generated by energy used during a building's occupancy stage, by heating, cooling, and lighting systems; equipment and appliances; and other critical functions. This is the red CO2 cloud in the life-cycle graphic. It is larger than the gray CO2 clouds because, in most buildings, operational carbon is the largest contributor to total carbon.What is Carbon Dioxide Equivalent (CO2e)?Often, you will see the term CO2e used. According to the US Environmental Protection Agency (EPA), "CO2e is simply the combination of the pollutants that contribute to climate change adjusted using their global warming potential." In other words, it is a way to translate the effect of pollutants (e.g. methane, nitrous oxide) into the equivalent volume of CO2 that would have the same effect on the atmosphere.Today and the FutureToday, carbon from building operations (72 %) is a much larger challenge than that from construction materials' embodied carbon (28 %) (Architecture 2030, 2019). Projections into 2050 anticipate the operations/embodied carbon split will be closer to 50/50, but this hinges on building designs and renovations between now and 2050 making progress on improving building operations.Why Insulation?Insulation, and specifically continuous insulation on low-slope roofs, is especially relevant to the carbon discussion because, according to the Embodied Carbon 101: Envelope presentation by the Boston Society for Architecture: Insulation occupies the unique position at the intersection of embodied and operational carbon emissions for a building. Insulation is the only building material that directly offsets operational emissions. It can be said to pay back its embodied carbon debt with avoided emissions during the building's lifetime.A Thought Experiment on Reducing Total CarbonTo make progress on reducing the total carbon impact of buildings, it is best to start with the largest piece of today's pie, operational carbon. Within the range of choices made during building design and construction, not all selections have the same effect on operational carbon.When making decisions about carbon and energy reduction strategies, think about the problem as an "investment" rather than a "discretionary expense." Discretionary expenses are easier to reduce or eliminate by simply consuming less. In the example below, imagine you are flying to visit your client's building. Consider this a "discretionary expense." The input on the far left is a given number of kilograms of carbon dioxide equivalent (CO2e) generated for the flight, from the manufacturing of the airplane, to the fuel it burns, to its maintenance. The output is the flight itself, which creates CO2 emissions, but no durable good. In this case, the only CO2 reduction strategy you can make is to make fewer or shorter flights, perhaps by consolidating visits, employing a local designer of record, or visiting the building virtually whenever possible. Now consider the wallpaper you might specify for your client's building. It involves a discretionary expenditure of CO2e, in this case, used to produce a durable good. However, this durable good is a product without use-phase benefits. In other words, it cannot help to save energy during the operational phase of the building. It has other aesthetic and durability benefits, but no operational benefits to offset the CO2 emissions generated to create it. Your choices here are expanded over the previous example of an airplane flight. You can limit CO2 by choosing a product with a long useful life. You can also apply the three Rs: reduce the quantity of new product used, reuse existing material when possible, and recycle product scraps at installation and the rest at the end of its lifespan. In the final step in our thought experiment, consider the insulation in your client's building. As before, we must generate a certain amount of CO2e to create a durable good. In this case, it's one with use-phase benefits. Insulation can reduce operational energy by reducing heat flow through the building enclosure, reducing the need to burn fuel or use electricity to heat and cool the building. The good news is that, in addition to the other strategies considered for the flight and the wallpaper, here you can also maximize operational carbon savings to offset the initial embodied carbon input. And, unlike the discretionary nature of some flights and the often optional decision to use furnishings like wallpaper, heating and cooling are necessary for the functioning of almost all occupied buildings.Based on this example, you can consider building products with operational benefits, like insulation, as an "investment." It is appropriate to look at improving the building enclosure and understanding what the return on the investment is from a carbon perspective. As the comparison above demonstrates, if you have a limited supply of carbon to "invest", putting it into more roof insulation is a very smart move compared to "spending" it on a discretionary flight or on a product without use-phase carbon benefits, such as wallpaper.This means we should be careful not to measure products like insulation that save CO2e in the building use-phase savings only by their embodied carbon use, but by their total carbon profile. So, how do we calculate this?Putting It to the TestWe were curious to know just how much operational carbon roof insulation could save relative to the initial investment of embodied carbon required to include it in a building. To understand this, we modeled the US Department of Energy's (DOE) Standalone Retail Prototype Building located in Climate Zone 4A to comply with ASHRAE 90,1-2019 energy requirements. We took the insulation product's embodied energy and carbon data from the Polyisocyanurate Insulation Manufacturers Association's (PIMA) industry-wide environmental product declaration (EPD).To significantly reduce operational carbon, the largest carbon challenge facing buildings today, the returns on the investment of our building design strategies need to be consistent over time. This is where passive design strategies like building enclosure improvements really shine. They have much longer service lives than, for example, finish materials, leading to sustained returns.Specifically, we looked here at how our example building's roof insulation impacted both embodied and operational carbon and energy use. To do this, we calculated the cumulative carbon savings over the 75-year life of our model building. In our example, we assumed R-30 insulation installed at the outset, increased every 20 years by R-10, when the roof membrane is periodically replaced.In our analysis, the embodied CO2e associated with installing R-30 (shown by the brown curve in years -1 to 1), the embodied carbon of the additional R-10 of insulation added every 20 years (too small to show up in the graph), and the embodied carbon represented by end-of-life disposal (also too small to show up) are all taken into account. About five months after the building becomes operational, the embodied carbon investment of the roof insulation is dwarfed by the operational savings it provides. The initial and supplemental roof insulation ultimately saves a net of 705 metric tons of carbon over the life of the building.If you want to see more examples like the one above, check out PIMA's study, conducted by the consulting firm ICF. The research group looked at several DOE building prototypes across a range of climate zones, calculating how much carbon, energy, and money can be saved when roof insulation is upgraded from an existing baseline to current code compliance. Their results can be found here. Justin Koscher of PIMA also highlighted these savings, conveniently sorted by climate zone and building type, here.Support for Carbon Investment DecisionsSo how can you make sure you address both operational and embodied carbon when making "carbon investment" decisions? We've prepared a handy chart to help.First, when looking at lower-embodied-carbon substitutions for higher-embodied-carbon building materials or systems (moving from the upper-left red quadrant to the lower-left yellow quadrant in the chart), ensure that the alternatives you are considering have equivalent performance attributes in terms of resilience and longevity. If an alternative material or system has lower initial embodied carbon, but doesn't perform as well or last as long as the specified product, then it may not be a good carbon investment. Another consideration here is whether or not the embodied carbon of the alternative is released as emissions (i.e. as part of its raw material supply or manufacturing, or "cradle to gate" stages), or if it remains in the product throughout its useful life. In other words, can the alternative item be considered a carbon sink? If so, using it may be a good strategy.Next, determine if the alternative product or system can provide operational carbon savings, even if it has high embodied energy (upper-right yellow quadrant). If the alternative has positive operational carbon impacts over a long period, don't sacrifice operational carbon savings for the sake of avoiding an initial embodied product carbon investment when justified for strategic reasons.Last, if a product has high operational carbon savings and relatively low embodied carbon (lower-right green quadrant), include more of this product in your designs. The polyiso roof insulation in our example above fits into this category. You can utilize these carbon savings to offset the carbon use in other areas of the design, like aesthetic finishes, where the decision to use the product may be discretionary but desired.When designing buildings, we need to consider the whole picture, looking at building products' embodied carbon as a potential investment yielding improved operational and performance outcomes. Our design choices and product selection can have a significant impact on total carbon targets for the buildings we envision, build, and operate.Click these links to learn more about GAF's and Siplast's insulation solutions. Please also visit our design professional and architect resources page for guide specifications, details, innovative green building materials, continuing education, and expert guidance.We presented the findings in this blog in a presentation called "Carbon and Energy Impacts of Roof Insulation: The Whole[-Life] Story" given at the BEST6 Conference on March 19, 2024 in Austin, Texas.References:Architecture 2030. (2019). New Buildings: Embodied Carbon. https://web.archive.org/web/20190801031738/https://architecture2030.org/new-buildings-embodied/ Carbon Leadership Forum. (2023, April 2). 1 - Embodied Carbon 101. https://carbonleadershipforum.org/embodied-carbon-101/

By Authors Elizabeth Grant

Le 18 septembre 2024

Missing shingles on a roof.
Votre maison

Bardeaux manquants sur votre toit? Voici quoi faire

Si vous constatez des bardeaux manquants sur votre toit, ne vous inquiétez pas. Missing shingles aren't an emergency, but you should still act quickly, especially during wet seasons. Your roof is a multilayered system designed to protect your home's structure and finishes from water damage.If you ignore missing shingles, moisture can get into your home, leading to issues such as rot, mold, and costly water damage. Replacing missing shingles quickly can mean the difference between a minor roof repair and a total roof replacement.So, here's how to spot missing shingles and hire a roofer to replace them.How to Spot Missing ShinglesLocating missing shingles, before leaks set in, can save you time, money, and peace of mind. Here are several ways to spot them before they cause bigger issues.Inspect Your Roof from the GroundScope your roof with binoculars for signs of missing shingles. Inspecting your roof from the ground helps prevent shingle damage from walking on the roof and, most importantly, fall-related injuries. Scan your roof from every angle that it's safe to do so, including from streets, sidewalks, and neighbors' yards if you have permission to do so.Check for Shingle ChangesSystematically check each shingle following a horizontal or vertical line. A missing shingle often sticks out as a color change in your shingle pattern. While you're at it, look for shingles that are cracked, curled, or sagging or that aren't aligned with the others. These can all be signs of shingle or roof damage.Review Your Roof for Damage after StormsRoof damage often happens as a result of extreme weather. Once it's safe to be outdoors, visually inspect your roof for damage. You can also survey the ground around your property to spot any shingles that may have blown off.Look Inside Your Home for LeaksCheck inside your home for longer-term signs of missing shingles. Evidence of leaks in your attic or water stains on your interior ceilings or walls can indicate wider-spread water damage in your home. If you notice anything out of the ordinary, have a roofing professional inspect the area (both inside and outside) for damage.Schedule a Professional Roof InspectionThe National Roofing Contractors Association recommends professional-level roof inspections twice a year-once in the spring and once in the fall. Like routine car maintenance keeps repair costs down, roof inspections can help spot small concerns before they potentially become expensive problems.How to Hire a RooferOnce you spot missing shingles on your roof, the next step is hiring a professional to replace them. Create a list of questions before you call around, so you can find a reliable roofing company that won't cut corners.If you have warranties, you may also want to check whether or not those have any requirements. For example, all GAF roofing shingles and qualifying accessories (the "GAF Products") come with the coverage provided by the GAF Shingle & Accessory Limited Warranty,** and you don't need to do anything at all to get it.How to Prepare for Roofing RepairsThough every contractor is different, confirm certain details before signing any contracts. Here's how you can ensure you and your contractor are on the same page before work begins:Communicate clearly from the start; this will help prevent frustration and unexpected costs.Before making a deposit, be sure you both agree on the quote and job details.Agree on the job's start date, plus a contingency plan if bad weather forces a rain check. Ask your roofer if they'll install a temporary tarp to prevent water damage in the case of a delay.Read your quote carefully. Confirm approximate labor costs and the color, style, and brand of shingles that will be installed.Ask about anticipated material quantities and estimated roofing material costs (like flashing, roofing nails, etc.).Confirm whether the repair job includes cleanup costs and if the roofer will remove any debris.When to Consider a Roof ReplacementLook at the big picture before replacing missing shingles. Consider your roof's age, any warranties on your roof system, the extent of the roof damage (both internally and externally), and whether the missing shingles are an isolated issue. Multiple missing shingles or frequent repairs could be a sign that you need a new roof.Ready to schedule a professional roof inspection? Contact a GAF-certified roofing contractor* to get started.*Contractors enrolled in GAF certification programs are not employees or agents of GAF, and GAF does not control or otherwise supervise these independent businesses. Les entrepreneurs peuvent recevoir des avantages, tels que des points de fidélité et des remises sur les outils de marketing de GAF pour avoir participé au programme et offert des garanties améliorées GAF, qui exigent l'utilisation d'une quantité minimale de produits de la marque. Your dealings with a Contractor, and any services they provide to you, are subject to the GAF Contractor Terms of Use.* *GAF Accessory Products covered under this limited warranty include: GAF Ridge Cap Shingles, GAF Starter Strip Shingles, GAF Leak Barrier Products, GAF Roof Deck Protection Products, and GAF Attic Ventilation Products. Pour obtenir une liste complète des produits GAF admissibles, visitez gaf.com/LRS. Cette garantie limitée ne couvre pas les membranes à faible pente. Rendez-vous sur le site fr.gaf.ca pour obtenir une copie des garanties limitées couvrant ces produits.

Par les auteurs Annie Crawford

Le 10 septembre 2024

Ne manquez pas une autre publication Roof Views de GAF!

Subscribe now