RoofViews

In Your Community

Roof Raiser: Gary Pierson Is Changing Lives Through GAF Roofing Academy

By Karen L Edwards

October 26, 2023

GAF Roofing Academy Instructor Gary Pierson grabs a pack of GAF roofing shingles while on a house.

When looking to get involved in the trades, a helping hand can make all the difference. With so many options and opportunities to choose from, workers who are having trouble deciding which skills to develop can benefit from the guidance of experienced mentors and industry veterans.

That's exactly the role Gary Pierson, a senior instructor with GAF Roofing Academy, knows he was meant to play. His position allows him to educate others and give back to people who remind him of himself when he was younger.

"I had a typical background of [many] youth who are not destined for college," Gary explains. "I had a little too much energy for most environments and ended up getting into a little bit of trouble." He found himself working in construction and discovered that roofing was a good fit for his energy level and "lack of fear."

Gary excelled in the industry, working in numerous exterior construction roles including roofing, siding, windows, and doors. He says that in construction, he found a way to challenge himself, and it showed. "I went from laborer to crew leader to subcontractor and then started my own business by the age of 26," Gary shares.

Finding Fulfillment Helping Others

Unfortunately, the 2008 recession affected Gary's business. He found himself back at his previous job where he was a crew leader, but that company was struggling as well. It was a challenging time that left him feeling unfulfilled.

After talking with his wife, Gary learned a friend of hers was connected to Habitat for Humanity and began looking for ways to get involved with the nonprofit. He eventually became a construction manager, and while it was a pay cut for him, the benefits he reaped have changed his life.

"What I lacked in extra income, I made up with more time with family and got a sense of community again," Gary says. "I've lived in this town my whole life. So, I got to build homes for people I went to high school with, people that I've met through social networking, and knowing who I'm building for and seeing the changes they made in their life really made me a better father and husband."

During his seven-year tenure at Habitat for Humanity, he took the organization from building one to two homes a year to 10 to 12 homes a year, ultimately building 57 homes in a community of 80,000 people.

Gary Pierson instructing GAF volunteers

Connecting with GAF

Gary knew GAF donated roofing materials for the Habitat for Humanity homes, but it wasn't until he volunteered for a Jimmy and Rosalynn Carter Work Project (Carter Work Project) event in 2018 that he met GAF team members.

On the jobsite, Gary noticed many of the volunteers were excited and eager to learn about roofing. Before the day's work began, Gary stepped up to teach them the basics of the trade, helping ensure the roofs would be properly installed and provide years of protection for the homes.

It was then that Gary learned GAF was hiring trainers for its CARE program. He says he was surprised to learn such a job existed, but he was happy and fulfilled with his work for Habitat for Humanity. A few months later, Erick Osuna, an operations manager at the GAF Roofing Academy, reached out to Gary. After learning the academy would be teaching at-risk youth, previously incarcerated individuals, and military veterans, Gary jumped at the opportunity.

Gary Pierson holds a roofing shingle as he educates volunteers

Changing Lives One Student (and Instructor) at a Time

As one of the first team members hired to teach in the GAF Roofing Academy, Gary participated in developing the program. Four successful years later, he's as invested as ever.

Gary stays in touch with his students after they complete the academy and says there's a "beacon of light" in each of his classes. He notes that one of his most memorable students is Demetris Purnell, whose profile video he shares with each new class. "Demetris was one of my students that I met who was previously incarcerated, and he didn't really have a whole lot of hope or feel that there were opportunities available for him," Gary recalls. "Just seeing him taking a shot and how successful he is now is impactful."

Many students' stories are just like Demetris'—students whose lives were changed by participating in the GAF Roofing Academy. For instance, Roz Jones says the experience helped her build confidence in herself. Shakyra Worley shares the course was meaningful to her because she learned a skill she can turn into a rewarding career.

Gary Pierson stands on a roof while a volunteer climbs a ladder

Gary says making a meaningful impact on his students' lives gives him a feeling of fulfillment every day—but he's quick to note that it's because of the individuals behind the GAF Roofing Academy. "None of this would be possible without the team that we have," he notes. "We have a dynamic team where everybody has something unique that they bring to the table. And I've learned just as much from my peers as I have from the leaders on the team."

Paying It Forward

Because of the commitment GAF makes to communities through its Community Matters initiative, Gary is still able to volunteer for the causes that are dear to him, including Habitat for Humanity and the Carter Work Project, among others.

Curious to learn more about the GAF Roofing Academy and the success its graduates have found? The commercial and residential roofing industry is booming, with demand for 19,000 new jobs expected by 2028, and now is the perfect time to begin a career in roofing with the GAF Roofing Academy. Explore all that the program has to offer, and see how you can get started by visiting the GAF Roofing Academy website.

About the Author

Karen L. Edwards is a freelance writer for the construction industry and has a passion for roofing, having worked in the industry for 20 years.

Related Articles

GAF Employee on the job
In Your Community

How GAF's Co-Op Program Makes a Difference in Students' Lives

As part of its effort to build resilient communities, GAF provides students across the country with opportunities to gain work experience and hands-on training. The GAF co-op program offers participants autonomy and leadership in project management, engineering design, budgeting, project installation, and more.Over the years, the GAF co-op recruiting program has helped students advance academically, grow professionally, and earn competitively while working full time with North America's largest roofing and waterproofing manufacturer.How the GAF Co-Op Program WorksThe program gives students high-impact, hands-on experience in the manufacturing sector. They perform meaningful work alongside supportive GAF mentors and senior leadership while earning a competitive wage. Participants can also receive credits from their university, which they can apply to their coursework.Differences between a Co-op and an InternshipInternships and co-ops have a few notable differences. At GAF, the main difference is the length of time. Internships at GAF usually last 10 weeks, but the co-op program is six months. While internship programs often allow students to stay enrolled in school and complete coursework as they gain professional training, co-op participants must take a semester off to gain full-time work experience.Not all companies pay internship participants for their work. However, at GAF, both interns and co-op students are paid competitive hourly wages. GAF also offers financial relocation assistance for qualifying co-op program candidates.Finally, participants in the GAF programs are there to learn real skills that will help them advance their future careers. GAF interns and co-op students are given the same responsibilities, and chances to collaborate on major projects, as full-time employees.Recent GAF Co-Op Success StoriesMin U, a mechanical engineering student at the University of Maryland, says he "fell in love with manufacturing" thanks to his placement on an engineering project. The experience gave him a firsthand account of the role engineering plays in manufacturing safety, profit, and operations. This ultimately led him to shift his career goals from construction management to manufacturing engineering.When Dante Stellar, an industrial engineering student at Virginia Tech, met GAF representatives at a career fair, he says he didn't expect to become a self-proclaimed "nerd for shingles" and develop a passion for manufacturing. However, that's exactly what happened. And that newfound passion paid off when Dante won Student of the Year from Virginia Tech's Cooperative Education and Internship Program. Dante notes he's now eager to return to GAF and aspires to become a manufacturing leader in the world of shingles.Michael Hesseltine, an electrical engineering student at Texas A&M University, chanced upon a GAF co-op recruiting listing online. After a series of interviews, he landed a project engineering co-op in Ennis, Texas. Working with the Ennis team on major projects solidified his manufacturing engineer career goals.Co-Op Students Complete Meaningful WorkStudents in the GAF co-op program are involved in meaningful projects and get to see their work's impact on day-to-day operations.During his time in Ennis, Michael designed a baler that compacts fiberglass scrap, reducing site disposal trips and costs. He also oversaw renovations of the site's maintenance mechanical break room from start to finish. He notes that his favorite contribution was helping design the electrical system for a dewatering press.In Baltimore, Min's core project was ensuring site compliance with state regulations for discharging stormwater runoff. Min managed all the project contractors and budget with his manager's and mentor's support. Throughout his time there, Min was exposed to Lean methodologies, 5S, risk mitigation, insurance compliance, cost control, and procedure standardization. He gained an overall understanding of manufacturing equipment and business.At the Tampa plant, Dante worked on a rock pad storage expansion project and installed a starwheel machine guarding the manufacturing line, among other important projects. According to Dante, the defining moment of his co-op experience was his granule silo refurbishment project, which involved replacing eight silos, including floor plates and support beams.Dante explains the trust and opportunities his mentors provided were key to his success. "At GAF, I was given the chance to interact with contractors, and immerse myself in the plant, which accelerated my learning," he says.Co-Op Students Build Professional RelationshipsThrough "lunch and learn" sessions, leadership speaker series, meetings with senior leadership, and mentorship, co-op students build long-term professional relationships.Dante was given the chance to showcase the coordination and safety efforts involved in his granule silo project to the GAF executive leadership team in Parsippany, New Jersey.For Min, getting the right feedback to grow meant having the right relationships. He notes the mentorship from his manager Alex Smith and engineering manager Mike Kloda was key to his progression. As advice to future co-op participants, he explains that "everyone is here to help... but it's up to you to drive that forward."Meanwhile, the autonomy and leadership opportunities program leaders gave Michael allowed him to grow technically and professionally. "I was often the go-to person for projects, managing contractors and ensuring everything was on track," he says.Joining an Industry Filled with OpportunityThe GAF co-op program helped Min, Michael, and Dante start and solidify their careers in manufacturing engineering. Following their experience, each student was excited and motivated by the autonomy, responsibility, and growth opportunities they were given. In fact, Min has since accepted a full-time role as a project engineer at the GAF plant in Baltimore. His expected start date is July 7, 2025.GAF is committed to fostering diversity, equity, and inclusion throughout the organization. It believes a talented and diverse organization can drive innovation, growth, and transformation more effectively. To further bolster inclusivity, GAF offers academic and merit scholarships, partners with the Thurgood Marshall College Fund to recruit from the nation's most diverse talent at Historically Black Colleges and Universities and Predominantly Black Institutions, and reaches out to candidates at career fairs nationwide.Bright and motivated minds who want to explore manufacturing have plenty of opportunities. From shingles to solar to environmental impact, GAF offers many exciting career paths.Are you ready to do work that matters and be empowered to explore a leadership role? Discover the co-ops, internships, and job opportunities available at GAF.

By Authors Annie Crawford

October 11, 2024

Conference attendees listen to a panel of speakers.
In Your Community

Making Connections at the 2024 GAF Latinos In Roofing Summit

For the past several years, GAF has hosted the Latinos In Roofing Summit & Expo to acknowledge, celebrate, and empower Latino roofing contractors and installers. The event provides networking opportunities, education, and training—presented entirely in Spanish—in a comfortable, welcoming atmosphere.Now in its third year, the summit has become a trusted resource for the Spanish-speaking contractor community to gain insights into how to better run and grow their roofing businesses. Educational sessions cover topics essential for business success, such as sales, insurance restoration work, commercial roofing, leadership, marketing, and roofing products.The first Latinos In Roofing Expo of 2024 was held on June 22nd in Los Angeles, and hundreds of industry professionals attended. With an emphasis on fostering community, the event featured a range of activities, including a pre-reception networking session and the chance to attend an LA Dodgers game with their new connections.Here's a look at what the event offered attendees and the experiences they shared.Breaking through Language BarriersAlan Lopez, GAF CARE trainer, explains that Latinos In Roofing events were developed when he noticed more Hispanic contractors attending GAF events conducted in English. For many of them, English was a second language, so it was harder to learn and take in all the information, some of which was lost in translation. Lopez reached out to his leadership at GAF, and they were eager to offer resources for Latino contractors, hosting the first expo in 2019.Abad Sarate, CEO of Asa Pro Roofing in Seattle, Washington, credits the conference being conducted entirely in Spanish as critical to successfully learning and understanding the information presented. "For us, it is very important to understand it in our main language, it is essential," he says. "And to have this type of conference for many Latino contractors fills us with pride." He continues, "I see more and more Latinos owning roofing companies, and the truth is that I am very happy—it makes me very proud as a Latino too."Luis Velasquez from Entrenando Latinos In Roofing agrees that the summit presented in Spanish was important to attendees' success. "We Latinos, who are first generation, who did not go through school, who come from poor countries, have a conflict and that is that we do not understand 100% English, we are not fully bilingual," he said. "So, when we manage to understand what is going on and how we can put it into practice, it is a complete gain. When we put knowledge in our head, the head will put money in our pockets."Creating an Annual Tradition for Roofing ProfessionalsGaining knowledge for business success was a key theme at this year's event. The informational sessions, keynote lectures, and demonstrations enabled attendees to learn about new products and gain new skills while connecting with other Latinos in the roofing industry. Many attendees were repeat visitors, demonstrating the value the event provides.Sarate is a two-time attendee and explains that the annual gathering has been instrumental in his company's development. "It has been an exceptional part of our growth because of all the knowledge that we take away from here," he shares. "We come back with much more knowledge. And in the end, knowledge is power... We put that knowledge back into the company, and it has benefited us a lot."Marcos Sierra from Sierra Group Roofing & Solar returned to the expo for a third time because of the networking opportunities and education. "The reason I come back is, one, to see my colleagues from other parts of the United States. Two, every time I come, I learn something new. And three, to refine, refine, refine. [So we can] grow our business," he said.Supporting Contractors beyond the Roofing Summit & ExpoThe Latinos In Roofing initiative started at GAF to create resources and a community for Spanish-speaking contractors and installers. Since establishing the initiative in 2017, the company has seen more and more members of the Hispanic community thrive.Contractors who attend the Latinos In Roofing Summit & Expo are granted access to GAF business tools, which they can use to raise their profit margins and reduce risks. They can also work toward becoming certified with GAF and joining the elite certified contractor program. They can then offer GAF warranties that help with their value propositions when working with potential clients.From increasing profits to growing their client lists and achieving financial independence, the contractors are finding success through the support they receive. Sarate can attest to how attending these Expos has helped his business. He notes that he's grateful for all of the support GAF offers.Joining the CommunityIf you're ready to become part of a community that truly understands your needs, will help you grow your business, and provide resources in your preferred language, explore GAF Latinos In Roofing. You can learn about available resources and online classes, join the GAF rewards program, become certified with GAF, and sign up to attend future events.

By Authors Karen L Edwards

September 18, 2024

Installation of ISO Board and TPO on a Roof
Building Science

Roof Insulation: A Positive Investment to Reduce Total Carbon

Have you ever thought about building products reducing the carbon dioxide emissions caused by your building? When considered over their useful life, materials like insulation decrease total carbon emissions thanks to their performance benefits. Read on for an explanation of how this can work in your designs.What is Total Carbon?Total carbon captures the idea that the carbon impacts of buildings should be considered holistically across the building's entire life span and sometimes beyond. (In this context, "carbon" is shorthand for carbon dioxide (CO2) emissions.) Put simply, total carbon is calculated by adding a building's embodied carbon to its operational carbon.Total Carbon = Embodied Carbon + Operational CarbonWhat is Embodied Carbon?Embodied carbon is comprised of CO2 emissions from everything other than the operations phase of the building. This includes raw material supply, manufacturing, construction/installation, maintenance and repair, deconstruction/demolition, waste processing/disposal of building materials, and transport between each stage and the next. These embodied carbon phases are indicated by the gray CO2 clouds over the different sections of the life cycle in the image below.We often focus on "cradle-to-gate" embodied carbon because this is the simplest to calculate. "Cradle-to-gate" is the sum of carbon emissions from the energy consumed directly or indirectly to produce the construction materials used in a building. The "cradle to gate" approach neglects the remainder of the embodied carbon captured in the broader "cradle to grave" assessment, a more comprehensive view of a building's embodied carbon footprint.What is Operational Carbon?Operational carbon, on the other hand, is generated by energy used during a building's occupancy stage, by heating, cooling, and lighting systems; equipment and appliances; and other critical functions. This is the red CO2 cloud in the life-cycle graphic. It is larger than the gray CO2 clouds because, in most buildings, operational carbon is the largest contributor to total carbon.What is Carbon Dioxide Equivalent (CO2e)?Often, you will see the term CO2e used. According to the US Environmental Protection Agency (EPA), "CO2e is simply the combination of the pollutants that contribute to climate change adjusted using their global warming potential." In other words, it is a way to translate the effect of pollutants (e.g. methane, nitrous oxide) into the equivalent volume of CO2 that would have the same effect on the atmosphere.Today and the FutureToday, carbon from building operations (72%) is a much larger challenge than that from construction materials' embodied carbon (28%) (Architecture 2030, 2019). Projections into 2050 anticipate the operations/embodied carbon split will be closer to 50/50, but this hinges on building designs and renovations between now and 2050 making progress on improving building operations.Why Insulation?Insulation, and specifically continuous insulation on low-slope roofs, is especially relevant to the carbon discussion because, according to the Embodied Carbon 101: Envelope presentation by the Boston Society for Architecture: Insulation occupies the unique position at the intersection of embodied and operational carbon emissions for a building. Insulation is the only building material that directly offsets operational emissions. It can be said to pay back its embodied carbon debt with avoided emissions during the building's lifetime.A Thought Experiment on Reducing Total CarbonTo make progress on reducing the total carbon impact of buildings, it is best to start with the largest piece of today's pie, operational carbon. Within the range of choices made during building design and construction, not all selections have the same effect on operational carbon.When making decisions about carbon and energy reduction strategies, think about the problem as an "investment" rather than a "discretionary expense." Discretionary expenses are easier to reduce or eliminate by simply consuming less. In the example below, imagine you are flying to visit your client's building. Consider this a "discretionary expense." The input on the far left is a given number of kilograms of carbon dioxide equivalent (CO2e) generated for the flight, from the manufacturing of the airplane, to the fuel it burns, to its maintenance. The output is the flight itself, which creates CO2 emissions, but no durable good. In this case, the only CO2 reduction strategy you can make is to make fewer or shorter flights, perhaps by consolidating visits, employing a local designer of record, or visiting the building virtually whenever possible. Now consider the wallpaper you might specify for your client's building. It involves a discretionary expenditure of CO2e, in this case, used to produce a durable good. However, this durable good is a product without use-phase benefits. In other words, it cannot help to save energy during the operational phase of the building. It has other aesthetic and durability benefits, but no operational benefits to offset the CO2 emissions generated to create it. Your choices here are expanded over the previous example of an airplane flight. You can limit CO2 by choosing a product with a long useful life. You can also apply the three Rs: reduce the quantity of new product used, reuse existing material when possible, and recycle product scraps at installation and the rest at the end of its lifespan. In the final step in our thought experiment, consider the insulation in your client's building. As before, we must generate a certain amount of CO2e to create a durable good. In this case, it's one with use-phase benefits. Insulation can reduce operational energy by reducing heat flow through the building enclosure, reducing the need to burn fuel or use electricity to heat and cool the building. The good news is that, in addition to the other strategies considered for the flight and the wallpaper, here you can also maximize operational carbon savings to offset the initial embodied carbon input. And, unlike the discretionary nature of some flights and the often optional decision to use furnishings like wallpaper, heating and cooling are necessary for the functioning of almost all occupied buildings.Based on this example, you can consider building products with operational benefits, like insulation, as an "investment." It is appropriate to look at improving the building enclosure and understanding what the return on the investment is from a carbon perspective. As the comparison above demonstrates, if you have a limited supply of carbon to "invest", putting it into more roof insulation is a very smart move compared to "spending" it on a discretionary flight or on a product without use-phase carbon benefits, such as wallpaper.This means we should be careful not to measure products like insulation that save CO2e in the building use-phase savings only by their embodied carbon use, but by their total carbon profile. So, how do we calculate this?Putting It to the TestWe were curious to know just how much operational carbon roof insulation could save relative to the initial investment of embodied carbon required to include it in a building. To understand this, we modeled the US Department of Energy's (DOE) Standalone Retail Prototype Building located in Climate Zone 4A to comply with ASHRAE 90.1-2019 energy requirements. We took the insulation product's embodied energy and carbon data from the Polyisocyanurate Insulation Manufacturers Association's (PIMA) industry-wide environmental product declaration (EPD).To significantly reduce operational carbon, the largest carbon challenge facing buildings today, the returns on the investment of our building design strategies need to be consistent over time. This is where passive design strategies like building enclosure improvements really shine. They have much longer service lives than, for example, finish materials, leading to sustained returns.Specifically, we looked here at how our example building's roof insulation impacted both embodied and operational carbon and energy use. To do this, we calculated the cumulative carbon savings over the 75-year life of our model building. In our example, we assumed R-30 insulation installed at the outset, increased every 20 years by R-10, when the roof membrane is periodically replaced.In our analysis, the embodied CO2e associated with installing R-30 (shown by the brown curve in years -1 to 1), the embodied carbon of the additional R-10 of insulation added every 20 years (too small to show up in the graph), and the embodied carbon represented by end-of-life disposal (also too small to show up) are all taken into account. About five months after the building becomes operational, the embodied carbon investment of the roof insulation is dwarfed by the operational savings it provides. The initial and supplemental roof insulation ultimately saves a net of 705 metric tons of carbon over the life of the building.If you want to see more examples like the one above, check out PIMA's study, conducted by the consulting firm ICF. The research group looked at several DOE building prototypes across a range of climate zones, calculating how much carbon, energy, and money can be saved when roof insulation is upgraded from an existing baseline to current code compliance. Their results can be found here. Justin Koscher of PIMA also highlighted these savings, conveniently sorted by climate zone and building type, here.Support for Carbon Investment DecisionsSo how can you make sure you address both operational and embodied carbon when making "carbon investment" decisions? We've prepared a handy chart to help.First, when looking at lower-embodied-carbon substitutions for higher-embodied-carbon building materials or systems (moving from the upper-left red quadrant to the lower-left yellow quadrant in the chart), ensure that the alternatives you are considering have equivalent performance attributes in terms of resilience and longevity. If an alternative material or system has lower initial embodied carbon, but doesn't perform as well or last as long as the specified product, then it may not be a good carbon investment. Another consideration here is whether or not the embodied carbon of the alternative is released as emissions (i.e. as part of its raw material supply or manufacturing, or "cradle to gate" stages), or if it remains in the product throughout its useful life. In other words, can the alternative item be considered a carbon sink? If so, using it may be a good strategy.Next, determine if the alternative product or system can provide operational carbon savings, even if it has high embodied energy (upper-right yellow quadrant). If the alternative has positive operational carbon impacts over a long period, don't sacrifice operational carbon savings for the sake of avoiding an initial embodied product carbon investment when justified for strategic reasons.Last, if a product has high operational carbon savings and relatively low embodied carbon (lower-right green quadrant), include more of this product in your designs. The polyiso roof insulation in our example above fits into this category. You can utilize these carbon savings to offset the carbon use in other areas of the design, like aesthetic finishes, where the decision to use the product may be discretionary but desired.When designing buildings, we need to consider the whole picture, looking at building products' embodied carbon as a potential investment yielding improved operational and performance outcomes. Our design choices and product selection can have a significant impact on total carbon targets for the buildings we envision, build, and operate.Click these links to learn more about GAF's and Siplast's insulation solutions. Please also visit our design professional and architect resources page for guide specifications, details, innovative green building materials, continuing education, and expert guidance.We presented the findings in this blog in a presentation called "Carbon and Energy Impacts of Roof Insulation: The Whole[-Life] Story" given at the BEST6 Conference on March 19, 2024 in Austin, Texas.References:Architecture 2030. (2019). New Buildings: Embodied Carbon. https://web.archive.org/web/20190801031738/https://architecture2030.org/new-buildings-embodied/ Carbon Leadership Forum. (2023, April 2). 1 - Embodied Carbon 101. https://carbonleadershipforum.org/embodied-carbon-101/

By Authors Elizabeth Grant

September 13, 2024

Don't miss another GAF RoofViews post!

Subscribe now